Improving data mining utility with projective sampling

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

18 Scopus citations

Abstract

Overall performance of the data mining process depends not just on the value of the induced knowledge but also on various costs of the process itself such as the cost of acquiring and pre-processing training examples, the CPU cost of model induction, and the cost of committed errors. Recently, several progressive sampling strategies for maximizing the overall data mining utility have been proposed. All these strategies are based on repeated acquisitions of additional training examples until a utility decrease is observed. In this paper, we present an alternative, projective sampling strategy, which fits functions to a partial learning curve and a partial run-time curve obtained from a small subset of potentially available data and then uses these projected functions to analytically estimate the optimal training set size. The proposed approach is evaluated on a variety of benchmark datasets using the RapidMiner environment for machine learning and data mining processes. The results show that the learning and run-time curves projected from only several data points can lead to a cheaper data mining process than the common progressive sampling methods.

Original languageEnglish
Title of host publicationKDD '09
Subtitle of host publicationProceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
Pages487-495
Number of pages9
DOIs
StatePublished - 9 Nov 2009
Event15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '09 - Paris, France
Duration: 28 Jun 20091 Jul 2009

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '09
Country/TerritoryFrance
CityParis
Period28/06/091/07/09

Keywords

  • Active learning
  • Classification
  • Cost-sensitive learning
  • Data acquisition
  • Optimization
  • Utility-based data mining

ASJC Scopus subject areas

  • Software
  • Information Systems

Fingerprint

Dive into the research topics of 'Improving data mining utility with projective sampling'. Together they form a unique fingerprint.

Cite this