Improving the radiation hardness of space solar cells via nanophotonic light trapping

A. Mellor, N. P. Hylton, Ch Wellens, T. Thomas, Y. Al-Saleh, V. Giannini, A. Braun, H. Hauser, S. A. Maier, N. J. Ekins-Daukes

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We show that the radiation-hardness of space solar cells can be significantly improved by employing nanophotonic light trapping. Two light-trapping structures are investigated in this work. In the first, an array of Al nanoparticles is embedded within the anti-reflection coating of a GaInP/InGaAs/Ge solar cell. A combined experimental and simulation study shows that this structure is unlikely to lead to an improvement in radiation hardness. In the second, a diffractive structure is positioned between the middle cell and the bottom cell. Computational results, obtained using an experimentally validated electro-optical simulation tool, show that a properly designed light-trapping structure in this position can lead to a relative 10% improvement in the middle-cell photocurrent at end-of-life.

Original languageEnglish
Title of host publication2016 IEEE 43rd Photovoltaic Specialists Conference, PVSC 2016
PublisherInstitute of Electrical and Electronics Engineers
Pages3401-3404
Number of pages4
ISBN (Electronic)9781509027248
DOIs
StatePublished - 18 Nov 2016
Externally publishedYes
Event43rd IEEE Photovoltaic Specialists Conference, PVSC 2016 - Portland, United States
Duration: 5 Jun 201610 Jun 2016

Publication series

NameConference Record of the IEEE Photovoltaic Specialists Conference
Volume2016-November
ISSN (Print)0160-8371

Conference

Conference43rd IEEE Photovoltaic Specialists Conference, PVSC 2016
Country/TerritoryUnited States
CityPortland
Period5/06/1610/06/16

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Industrial and Manufacturing Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Improving the radiation hardness of space solar cells via nanophotonic light trapping'. Together they form a unique fingerprint.

Cite this