Abstract
Aerated soils are a biological sink for atmospheric methane. However, the activity of desert soils and the presence of methanotrophs in these soils have hardly been studied. We studied on-site atmospheric methane consumption rates as well as the diversity and expression of the pmoA gene, coding for a subunit of the particulate methane monooxygenase, in arid and hyperarid soils in the Negev Desert, Israel. Methane uptake was only detected in undisturbed soils in the arid region (∼90 mm year-1) and vertical methane profiles in soil showed the active layer to be at 0-20 cm depth. No methane uptake was detected in the hyperarid soils (∼20 mm year-1) as well as in disturbed soils in the arid region (i.e. agricultural field and a mini-catchment). Molecular analysis of the methanotrophic community using terminal restriction fragment length polymorphism (T-RFLP) and cloning/sequencing of the pmoA gene detected methanotrophs in the active soils, whereas the inactive ones were dominated by sequences of the homologous gene amoA, coding for a subunit of the ammonia monooxygenase. Even in the active soils, methanotrophs (as well as in situ activity) could not be detected in the soil crust, which is the biologically most important layer in desert soils. All pmoA sequences belonged to yet uncultured strains. Transcript analysis showed dominance of sequences clustering within the JR3, formerly identified in Californian grassland soils. Our results show that although active methanotrophs are prevalent in arid soils they seem to be absent or inactive in hyperarid and disturbed arid soils. Furthermore, we postulate that methanotrophs of the yet uncultured JR3 cluster are the dominant atmospheric methane oxidizers in this ecosystem.
Original language | English |
---|---|
Pages (from-to) | 2598-2610 |
Number of pages | 13 |
Journal | Environmental Microbiology |
Volume | 11 |
Issue number | 10 |
DOIs | |
State | Published - 1 Oct 2009 |
Externally published | Yes |
ASJC Scopus subject areas
- Microbiology
- Ecology, Evolution, Behavior and Systematics