Inclusion of High-Field Target Data in AMOEBA's Calibration Improves Predictions of Protein-Ion Interactions

Julián A. Delgado, Vered Wineman-Fisher, Sagar Pandit, Sameer Varma

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

The reliability of molecular mechanics simulations to predict effects of ion binding to proteins depends on their ability to simultaneously describe ion-protein, ion-water, and protein-water interactions. Force fields (FFs) to describe protein-water and ion-water interactions have been constructed carefully and have also been refined routinely to improve accuracy. Descriptions for ion-protein interactions have also been refined, although in an a posteriori manner through the use of "nonbonded-fix (NB-fix)"approaches in which parameters from default Lennard-Jones mixing rules are replaced with those optimized against some reference data. However, even after NB-fix corrections, there remains a significant need for improvement. This is also true for polarizable FFs that include self-consistent inducible moments. Our recent studies on the polarizable AMOEBA FF suggested that the problem associated with modeling ion-protein interactions could be alleviated by recalibrating polarization models of cation-coordinating functional groups so that they respond better to the high electric fields present near ions. Here, we present such a recalibration of carbonyls, carboxylates, and hydroxyls in the AMOEBA protein FF and report that it does improve predictions substantially-mean absolute errors in Na+-protein and K+-protein interaction energies decrease from 8.7 to 5.3 and 9.6 to 6.3 kcal/mol, respectively. Errors are computed with respect to estimates from van der Waals-inclusive density functional theory benchmarked against high-level quantum mechanical calculations and experiments. While recalibration does improve ion-protein interaction energies, they still remain underestimated, suggesting that further improvements can be made in a systematic manner through modifications in classical formalism. Nevertheless, we show that by applying our many-body NB-fix correction to Lennard-Jones components, these errors are further reduced to 2.7 and 2.6 kcal/mol, respectively, for Na+ and K+ ions. Finally, we show that the recalibrated AMOEBA protein FF retains its intrinsic reliability in predicting protein structure and dynamics in the condensed phase.

Original languageEnglish
Pages (from-to)4713-4726
Number of pages14
JournalJournal of Chemical Information and Modeling
Volume62
Issue number19
DOIs
StatePublished - 10 Oct 2022
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering
  • Computer Science Applications
  • Library and Information Sciences

Fingerprint

Dive into the research topics of 'Inclusion of High-Field Target Data in AMOEBA's Calibration Improves Predictions of Protein-Ion Interactions'. Together they form a unique fingerprint.

Cite this