TY - GEN
T1 - Incorporating Structured Representations into Pretrained Vision & Language Models Using Scene Graphs
AU - Herzig, Roei
AU - Mendelson, Alon
AU - Karlinsky, Leonid
AU - Arbelle, Assaf
AU - Feris, Rogerio
AU - Darrell, Trevor
AU - Globerson, Amir
N1 - Publisher Copyright:
©2023 Association for Computational Linguistics.
PY - 2023/1/1
Y1 - 2023/1/1
N2 - Vision and language models (VLMs) have demonstrated remarkable zero-shot (ZS) performance in a variety of tasks. However, recent works have shown that even the best VLMs struggle to capture aspects of compositional scene understanding, such as object attributes, relations, and action states. In contrast, obtaining structured annotations, such as scene graphs (SGs), that could improve these models is time-consuming and costly, and thus cannot be used on a large scale. Here we ask whether small SG datasets can provide sufficient information for enhancing structured understanding of pretrained VLMs. We show that it is indeed possible to improve VLMs when learning from SGs by integrating components that incorporate structured information into both visual and textual representations. For the visual side, we incorporate a special “SG Component” in the image transformer trained to predict SG information, while for the textual side, we utilize SGs to generate fine-grained captions that highlight different compositional aspects of the scene. Our method improves the performance of several popular VLMs on multiple VL datasets with only a mild degradation in ZS capabilities.
AB - Vision and language models (VLMs) have demonstrated remarkable zero-shot (ZS) performance in a variety of tasks. However, recent works have shown that even the best VLMs struggle to capture aspects of compositional scene understanding, such as object attributes, relations, and action states. In contrast, obtaining structured annotations, such as scene graphs (SGs), that could improve these models is time-consuming and costly, and thus cannot be used on a large scale. Here we ask whether small SG datasets can provide sufficient information for enhancing structured understanding of pretrained VLMs. We show that it is indeed possible to improve VLMs when learning from SGs by integrating components that incorporate structured information into both visual and textual representations. For the visual side, we incorporate a special “SG Component” in the image transformer trained to predict SG information, while for the textual side, we utilize SGs to generate fine-grained captions that highlight different compositional aspects of the scene. Our method improves the performance of several popular VLMs on multiple VL datasets with only a mild degradation in ZS capabilities.
UR - http://www.scopus.com/inward/record.url?scp=85179156022&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85179156022
T3 - EMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings
SP - 14077
EP - 14098
BT - EMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings
A2 - Bouamor, Houda
A2 - Pino, Juan
A2 - Bali, Kalika
PB - Association for Computational Linguistics (ACL)
T2 - 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023
Y2 - 6 December 2023 through 10 December 2023
ER -