TY - JOUR
T1 - Increased anxiety-like behaviors and mitochondrial dysfunction in mice with targeted mutation of the Bcl-2 gene
T2 - Further support for the involvement of mitochondrial function in anxiety disorders
AU - Einat, Haim
AU - Yuan, Peixiong
AU - Manji, Husseini K.
N1 - Funding Information:
This study was supported by an intramural grant from the National Institute of Mental Health, by a Stanley Medical research Institute Grant to HKM and by a National Alliance for Research on Schizophrenia and Depression 2005 Young Investigator Award to HE.
PY - 2005/12/7
Y1 - 2005/12/7
N2 - There is growing evidence that anxiety disorders are associated with impairments of cellular plasticity and resilience. Paralleling these advances in our understanding of the neurobiologic underpinnings of anxiety disorders is the growing appreciation of the diverse functions that mitochondria play in regulating integrated CNS function. The emerging data suggest that mitochondrial Ca2+ sequestration has a key role in modulating the tone of synaptic plasticity in a variety of neuroanatomical regions, including those implicated in the pathophysiology of anxiety disorders. Furthermore, activation of peripheral mitochondrial benzodiazepine receptors resulted in reduced anxiety in rats. One of the major modulators of mitochondrial function is Bcl-2 proteins imbedded in the inner mitochondrial membrane. Bcl-2 overexpression increases mitochondria Ca2+ uptake capacity and resistance to Ca 2+-inhibition of respiration and upregulation of Bcl-2 increases maximal uptake capacity of mitochondria. We have, therefore, explored the significance of Bcl-2 in the association between mitochondrial function and affective disorders testing Bcl-2 heterozygote mice in models of affective and anxiety disorders. Mutant mice have reduced mitochondrial Bcl-2 levels, and although they have no gross behavioral abnormalities, they demonstrate a significant increase of anxiety-like behaviors. Bcl-2 heterozygote mice spent less time in the center of an open field, spent less time outside an enclosure in the "emergence test", were less likely to explore the transparent part of a black/white box or the open arms of an elevated plus maze compared with WT controls. Mutant mice did not differ from WT in measures of locomotion or in the forced swim test for depression-like behavior suggesting a specific effect on anxiety-like behaviors. Our study, therefore demonstrates that Bcl-2 may be a key factor in anxiety disorders and that its effects may possibly originate from its role in the mitochondria.
AB - There is growing evidence that anxiety disorders are associated with impairments of cellular plasticity and resilience. Paralleling these advances in our understanding of the neurobiologic underpinnings of anxiety disorders is the growing appreciation of the diverse functions that mitochondria play in regulating integrated CNS function. The emerging data suggest that mitochondrial Ca2+ sequestration has a key role in modulating the tone of synaptic plasticity in a variety of neuroanatomical regions, including those implicated in the pathophysiology of anxiety disorders. Furthermore, activation of peripheral mitochondrial benzodiazepine receptors resulted in reduced anxiety in rats. One of the major modulators of mitochondrial function is Bcl-2 proteins imbedded in the inner mitochondrial membrane. Bcl-2 overexpression increases mitochondria Ca2+ uptake capacity and resistance to Ca 2+-inhibition of respiration and upregulation of Bcl-2 increases maximal uptake capacity of mitochondria. We have, therefore, explored the significance of Bcl-2 in the association between mitochondrial function and affective disorders testing Bcl-2 heterozygote mice in models of affective and anxiety disorders. Mutant mice have reduced mitochondrial Bcl-2 levels, and although they have no gross behavioral abnormalities, they demonstrate a significant increase of anxiety-like behaviors. Bcl-2 heterozygote mice spent less time in the center of an open field, spent less time outside an enclosure in the "emergence test", were less likely to explore the transparent part of a black/white box or the open arms of an elevated plus maze compared with WT controls. Mutant mice did not differ from WT in measures of locomotion or in the forced swim test for depression-like behavior suggesting a specific effect on anxiety-like behaviors. Our study, therefore demonstrates that Bcl-2 may be a key factor in anxiety disorders and that its effects may possibly originate from its role in the mitochondria.
KW - Affective disorders
KW - Animal models
KW - Knockout
KW - Plasticity
UR - http://www.scopus.com/inward/record.url?scp=27644511756&partnerID=8YFLogxK
U2 - 10.1016/j.bbr.2005.06.012
DO - 10.1016/j.bbr.2005.06.012
M3 - Article
C2 - 16095731
AN - SCOPUS:27644511756
SN - 0166-4328
VL - 165
SP - 172
EP - 180
JO - Behavioural Brain Research
JF - Behavioural Brain Research
IS - 2
ER -