TY - JOUR
T1 - Inequalities for imaginary parts of eigenvalues of Schatten–von Neumann operators
AU - Gil’, Michael
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature.
PY - 2023/1/1
Y1 - 2023/1/1
N2 - Let Sp be the p-Schatten–von Neumann ideal of operators in a Hilbert space, A∈ Sp(2 ≤ p< ∞) , AR= (A+ A∗) / 2 , AI= (A- A∗) / (2 i) and λk(A) (k= 1 , 2 ,..) are the eigenvalues of A. The asterisk means the adjointness. We derive the inequality ∑k=1∞|Imλk(A)-λk(AI)|p≤ηpNpp(AR), where ηp≤ 2 p is an explicitly defined constant dependent on p, only, and Np(.) is the norm of Sp . In addition, assuming that AI is a nuclear operator, we obtain an inequality for the series of the imaginary parts of the eigenvalues of A via the trace of AI .
AB - Let Sp be the p-Schatten–von Neumann ideal of operators in a Hilbert space, A∈ Sp(2 ≤ p< ∞) , AR= (A+ A∗) / 2 , AI= (A- A∗) / (2 i) and λk(A) (k= 1 , 2 ,..) are the eigenvalues of A. The asterisk means the adjointness. We derive the inequality ∑k=1∞|Imλk(A)-λk(AI)|p≤ηpNpp(AR), where ηp≤ 2 p is an explicitly defined constant dependent on p, only, and Np(.) is the norm of Sp . In addition, assuming that AI is a nuclear operator, we obtain an inequality for the series of the imaginary parts of the eigenvalues of A via the trace of AI .
KW - Compact operators
KW - Hilbert space
KW - Localization of eigenvalues
KW - Perturbations
UR - http://www.scopus.com/inward/record.url?scp=85172697287&partnerID=8YFLogxK
U2 - 10.1007/s12215-023-00950-z
DO - 10.1007/s12215-023-00950-z
M3 - Article
AN - SCOPUS:85172697287
SN - 0009-725X
VL - 73
SP - 801
EP - 807
JO - Rendiconti del Circolo Matematico di Palermo
JF - Rendiconti del Circolo Matematico di Palermo
IS - 3
ER -