Inhibition of retrovirus DNA supercoiling in interferon-treated cells

M. Huleihel, M. Aboud

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

The effect of interferon (IFN) on the cytoplasmic synthesis of murine sarcoma virus DNA, its transport to the host nucleus, and its integration into the cellular genome were investigated. For this purpose, at various intervals after infection, DNA was extracted from the cytoplasmic fraction, nuclear Hirt supernatant, and chromosomal DNA pellet. The relative amount of viral DNA was estimated by C0t kinetics analysis of hybridization to murine sarcoma virus-specific [3H]cDNA. IFN was found to delay viral DNA synthesis by about 2.5 h, but the amount of viral DNA eventually formed in IFN-treated cells was comparable to that of the control. The transport of this DNA to the nucleus was delayed by IFN for 6 to 18 h, but once again, all the cytoplasmic viral DNA formed in IFN-treated cells was eventually transferred to their nucleus. However, although the main part of the viral DNA formed in control cells was finally integrated into the host genome, no significant integration was observed in IFN-treated cells. Alkaline sucrose gradient analysis revealed that IFN inhibited the accumulation of supercoiled viral DNA in the nucleus. Since supercoiled viral DNA is considered a precursor to integrated provirus, this observation may suggest that IFN inhibits viral DNA integration by blocking its supercoiling.

Original languageEnglish
Pages (from-to)120-126
Number of pages7
JournalJournal of Virology
Volume48
Issue number1
DOIs
StatePublished - 1 Jan 1983

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Fingerprint

Dive into the research topics of 'Inhibition of retrovirus DNA supercoiling in interferon-treated cells'. Together they form a unique fingerprint.

Cite this