Inhibition of specific adenylyl cyclase isoforms by lithium and carbamazepine, but not valproate, may be related to their antidepressant effect

Liad Mann, Eliahu Heldman, Yuly Bersudsky, Stephen F. Vatner, Yoshihiro Ishikawa, Orna Almog, Robert H. Belmaker, Galila Agam

Research output: Contribution to journalArticlepeer-review

38 Scopus citations

Abstract

Objectives: Lithium, valproate, and carbamazepine decrease stimulated brain cyclic-AMP (cAMP) levels. Adenylyl cyclase (AC), of which there are nine membrane-bound isoforms (AC1-AC9), catalyzes the formation of cAMP. We have recently demonstrated preferential inhibition of AC5 by lithium. We now sought to determine whether carbamazepine and valproate also preferentially inhibit specific AC isoforms or decrease cAMP levels via different mechanisms. Methods: COS7 cells were transfected with one of AC1-AC9, with or without D1-dopamine receptors. Carbamazepine's and valproate's effect on forskolin- or D1 agonist-stimulated ACs was studied. The effect of Mg. 2+ on lithium's inhibition was studied in membrane-enriched fraction from COS7 cells co-expressing AC5 and D1 receptors. AC5 knockout mice were tested for a behavioral phenotype similar to that of lithium treatment. Results: Carbamazepine preferentially inhibited forskolin-stimulated AC5 and AC1 and all D1 agonist-stimulated ACs, with AC5 and AC7 being the most sensitive. When compared to 1 or 3 mM Mg. 2+, 10 mM Mg. 2+ reduced lithium-induced AC5 inhibition by 70%. . In silico modeling suggests that among AC isoforms carbamazepine preferentially affects AC1 and AC5 by interacting with the catechol-estrogen site. Valproate did not affect any forskolin- or D1 receptor-stimulated AC. AC5 knockout mice responded similarly to antidepressant- or lithium-treated wild-types in the forced-swim test but not in the amphetamine-induced hyperactivity mania model. Conclusions: Lithium and carbamazepine preferentially inhibit AC5, albeit via different mechanisms. Lithium competes with Mg. 2+, which is essential for AC activity; carbamazepine competes for AC's catechol-estrogen site. Antidepressant-like behavior of AC5 knockout mice in the forced-swim test supports the notion that AC5 inhibition is involved in the antidepressant effect of lithium and carbamazepine. The effect of lithium and carbamazepine to lower cAMP formation in AC5-rich dopaminergic brain regions suggests that D1-dopamine receptors in these regions are involved in the antidepressant effect of mood stabilizers.

Original languageEnglish
Pages (from-to)885-896
Number of pages12
JournalBipolar Disorders
Volume11
Issue number8
DOIs
StatePublished - 8 Dec 2009

Keywords

  • Adenylyl cyclase
  • Carbamazepine
  • Lithium
  • Mood stabilization
  • Valproate

ASJC Scopus subject areas

  • Psychiatry and Mental health
  • Biological Psychiatry

Fingerprint

Dive into the research topics of 'Inhibition of specific adenylyl cyclase isoforms by lithium and carbamazepine, but not valproate, may be related to their antidepressant effect'. Together they form a unique fingerprint.

Cite this