Instructive Biomaterials for Myocardial Regeneration and Repair

Emil Ruvinov, Smadar Cohen

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review


Tissue regeneration following myocardial infarction (MI) represents a major challenge in cardiovascular therapy, as current clinical approaches are limited in their ability to regenerate or replace damaged myocardium. The lack of clinically-relevant cell sources, and the growing importance of paracrine effects of cell therapy, mediated by soluble growth factors and cytokines, favors the use of acellular biomaterials for myocardial tissue engineering. While the efficacy of acellular scaffold-based approaches have already been shown, applying the biomaterial in an injectable form represents a more clinically-appealing strategy, where only minimally invasive interventions are required to deliver the biopolymer solution. However, in order to enhance the passive effects mediated by the injected biomaterial on infarct stabilization and mechanical support, and achieve long-term functional improvement and regeneration of the cardiac muscle, the combination with controlled spatio-temporal delivery of bioactive molecules is required. Biomaterial-based growth factor delivery has already been shown to improve therapeutic outcome after MI. Affinity-binding alginate represents an example of such a system. This strategy has promising potential for myocardial repair and regeneration, as it provides mechanical support conferred by in situ hydrogel formation, and can affect multiple processes of myocardial regeneration by controlled delivery of multiple proteins. In conclusion, as the development of novel polymer schemes and approaches continues, the application of biomaterials that can instruct a favorable tissue reconstruction, facilitate self-repair, tissue salvage and regeneration, represents a platform for future modifications and combinations (for instance, with cell therapy). Hopefully, such efforts will have major clinical consequences on the treatment of MI and improve long-term outcome in heart failure patients.

Original languageEnglish
Title of host publicationStudies in Mechanobiology, Tissue Engineering and Biomaterials
Number of pages40
StatePublished - 1 Jan 2011

Publication series

NameStudies in Mechanobiology, Tissue Engineering and Biomaterials
ISSN (Print)1868-2006
ISSN (Electronic)1868-2014


  • Bioactive Molecule
  • Growth Factor Delivery
  • Hepatocyte Growth Factor
  • Infarcted Heart
  • Myocardial Regeneration

ASJC Scopus subject areas

  • Biomedical Engineering
  • Mechanics of Materials
  • Biomaterials
  • Biotechnology
  • Biophysics
  • Medicine (miscellaneous)


Dive into the research topics of 'Instructive Biomaterials for Myocardial Regeneration and Repair'. Together they form a unique fingerprint.

Cite this