Integrals of groups. II

João Araújo, Peter J. Cameron, Carlo Casolo, Francesco Matucci, Claudio Quadrelli

Research output: Contribution to journalArticlepeer-review

Abstract

An integral of a group G is a group H whose derived group (commutator subgroup) is isomorphic to G. This paper continues the investigation on integrals of groups started in the work [1]. We study: A sufficient condition for a bound on the order of an integral for a finite integrable group (Theorem 2.1) and a necessary condition for a group to be integrable (Theorem 3.2). The existence of integrals that are p-groups for abelian p-groups, and of nilpotent integrals for all abelian groups (Theorem 4.1). Integrals of (finite or infinite) abelian groups, including nilpotent integrals, groups with finite index in some integral, periodic groups, torsion-free groups and finitely generated groups (Section 5). The variety of integrals of groups from a given variety, varieties of integrable groups and classes of groups whose integrals (when they exist) still belong to such a class (Sections 6 and 7). Integrals of profinite groups and a characterization for integrability for finitely generated profinite centreless groups (Section 8.1). Integrals of Cartesian products, which are then used to construct examples of integrable profinite groups without a profinite integral (Section 8.2). We end the paper with a number of open problems.

Original languageEnglish
JournalIsrael Journal of Mathematics
DOIs
StateAccepted/In press - 1 Jan 2024
Externally publishedYes

ASJC Scopus subject areas

  • General Mathematics

Fingerprint

Dive into the research topics of 'Integrals of groups. II'. Together they form a unique fingerprint.

Cite this