Abstract
Understanding recharge mechanisms and controls in karst regions is extremely important for managing water resources because of the dynamic nature of the system. The objective of this study was to evaluate water percolation through epikarst by monitoring water flow into a cave and conducting artificial irrigation and tracer experiments, at Sif Cave in Wadi Sussi, Israel from 2005 through 2007. The research is based on continuous high-resolution direct measurements of both rainfall and water percolation in the cave chamber collected by three large PVC sheets which integrate drips from three different areas (17, 46, and 52 m 2). Barrels equipped with pressure transducers record drip rate and volume for each of the three areas. The combined measured rainfall and cave data enables estimation of recharge into the epikarst and to better understand the relationship of rainfall-recharge. Three distinct types of flow regimes were identified: (1) 'Quick flow' through preferential flow paths (large fractures and conduits); (2) 'Intermediate flow' through a secondary crack system; and (3) 'Slow flow' through the matrix. A threshold of ∼100 mm of rain at the beginning of the rainy season is required to increase soil water content allowing later rainfall events to percolate deeper through the soil and to initiate dripping in the cave. During winter, as the soil water content rises, the lag time between a rain event and cave drip response decreases. Annual recharge (140-160 mm in different areas in the cave) measured represents 30-35% of annual rainfall (460 mm).
Original language | English |
---|---|
Pages (from-to) | 2837-2845 |
Number of pages | 9 |
Journal | Hydrological Processes |
Volume | 25 |
Issue number | 18 |
DOIs | |
State | Published - 30 Aug 2011 |
Externally published | Yes |
Keywords
- Artificial tracers
- Cave drips
- Epikarst
- Percolation
- Recharge
- Vadose karst
ASJC Scopus subject areas
- Water Science and Technology