Abstract
Objectives: Interleukin (IL)-1 produced by vascular and bone marrow-derived cells exerts proinflammatory effects in these cell types by binding to IL-1 receptor type-1 (IL-1R1). We have previously shown that bone marrow-derived IL-1α and IL-1β are critical for atherogenesis in apoE knockout (KO) mice. The aim of the present study was to investigate whether IL-1R1 on vascular wall resident or bone marrow-derived cells mediates IL-1's effects in atherogenesis. Methods and results: We generated apoE-/-/IL-1R1-/- double knockout (DKO) mice and created radiation chimeras. Aortic sinus lesion area was 20-47% lower in DKO compared to apoE KO mice with similar plasma lipids. The production of IL-1α and IL-1β upon stimulation with LPS was not altered in IL-1R1-/- compared to IL-1R1+/+ peritoneal macrophages. DKO mice transplanted with IL-1R1+/+ bone marrow-derived cells had reduced (48%) aortic sinus lesion compared to apoE KO mice while specific deficiency of IL-1R1 in bone marrow-derived cells did not attenuate atherosclerosis. The mRNA levels of genes that promote macrophage recruitment to the vascular wall, namely CD68, VCAM-1, ICAM-1 and MCP-1 were lower in aortas from DKO compared to apoE KO mice. Finally, blockade of IL-1R1 with IL-1R antagonist (IL-1Ra) resulted in complete abrogation of IL-1β-induced expression of adhesion and chemotactic molecules and IL-1α, in isolated human umbilical vein endothelial cells (HUVEC). Conclusions: Vascular wall resident cells are the main targets for the pro-atherogenic effects of bone marrow-derived IL-1 through IL-1R1, partly by induction of adhesion and chemotactic molecules in endothelial cells.
Original language | English |
---|---|
Pages (from-to) | 329-336 |
Number of pages | 8 |
Journal | Atherosclerosis |
Volume | 222 |
Issue number | 2 |
DOIs | |
State | Published - 1 Jun 2012 |
Keywords
- Apolipoprotein E
- Atherosclerosis
- IL-1 receptor
- Inflammation
- Mice
ASJC Scopus subject areas
- Cardiology and Cardiovascular Medicine