Interrelations between coeval mafic and A-type silicic magmas from composite dykes in a bimodal suite of southern Israel, northernmost Arabian-Nubian Shield: Geochemical and isotope constraints

Y. Katzir, B. A. Litvinovsky, B. M. Jahn, M. Eyal, A. N. Zanvilevich, J. W. Valley, Ye Vapnik, Y. Beeri, M. J. Spicuzza

Research output: Contribution to journalArticlepeer-review

56 Scopus citations

Abstract

Late Neoproterozoic bimodal dyke suites are abundant in the Arabian-Nubian Shield. In southern Israel this suite includes dominant alkaline quartz porphyry dykes, rare mafic dykes, and numerous composite dykes with felsic interiors and mafic margins. The quartz porphyry chemically corresponds to A-type granite. Composite dykes with either abrupt or gradational contacts between the felsic and mafic rocks bear field, petrographic and chemical evidence for coexistence and mixing of basaltic and rhyolitic magmas. Mixing and formation of hybrid intermediate magmas commenced at depth and continued during emplacement of the dykes. Oxygen isotope ratios of alkali feldspar in quartz porphyry (13 to 15‰) and of plagioclase in trachydolerite (10-11‰) are much higher than their initial magmatic ratios predicted by equilibrium with unaltered quartz (8 to 9‰) and clinopyroxene (5.8‰). The elevation of δ18O in alkali feldspar and plagioclase, and extensive turbidization and sericitization call for post-magmatic low-temperature (≤ 100 °C) water-rock interaction. Hydrous alteration of alkali feldspar, the major carrier of Rb and Sr in the quartz-porphyry, also accounts for the highly variable and unusually high I(Sr) of 0.71253 to 0.73648. The initial 143Nd/144Nd ratios, expressed by εNd(T) values, are probably unaltered and show small variation in mafic and felsic rocks within a narrow range from + 1.4 to + 3.3. The Nd isotope signature suggests either a common mantle source for the mafic and silicic magmas or a juvenile crustal source for the felsic rocks (metamorphic rocks from the Elat area). However, oxygen isotope ratios of zircon in quartz porphyry [δ18O(Zrn) = 6.5 to 7.2‰] reveal significant crustal contribution to the rhyolite magma, suggesting that mafic and A-type silicic magmas are not co-genetic, although coeval. Comparison of 18O/16O ratios in zircon allows to distinguish two groups of A-type granites in the region: those with mantle-derived source, δ18O(Zrn) ranging from 5.5 to 5.8‰ (Timna and Katharina granitoids) and those with major contribution of the modified juvenile crustal component, δ18O(Zrn) varying from 6.5 to 7.2‰ (Elat quartz porphyry dykes and the Yehoshafat alkaline granite). This suggests that A-type silicic magmas in the northern ANS originated by alternative processes almost coevally.

Original languageEnglish
Pages (from-to)336-364
Number of pages29
JournalLithos
Volume97
Issue number3-4
DOIs
StatePublished - 1 Sep 2007

Keywords

  • A-type granite
  • Arabian-Nubian shield
  • Composite dyke
  • Nd isotopes
  • Oxygen isotopes
  • Sr isotopes

Fingerprint

Dive into the research topics of 'Interrelations between coeval mafic and A-type silicic magmas from composite dykes in a bimodal suite of southern Israel, northernmost Arabian-Nubian Shield: Geochemical and isotope constraints'. Together they form a unique fingerprint.

Cite this