TY - JOUR
T1 - Intramyocellular triacylglycerol accumulation across weight loss strategies; Sub-study of the CENTRAL trial
AU - Gepner, Yftach
AU - Shelef, Ilan
AU - Schwarzfuchs, Dan
AU - Cohen, Noa
AU - Bril, Nitzan
AU - Rein, Michal
AU - Tsaban, Gal
AU - Zelicha, Hila
AU - Meir, Anat Yaskolka
AU - Tene, Lilac
AU - Sarusy, Benjamin
AU - Rosen, Philip
AU - Hoffman, Jay R.
AU - Stout, Jeffrey R.
AU - Thiery, Joachim
AU - Ceglarek, Uta
AU - Stumvoll, Michael
AU - Blüher, Matthias
AU - Stampfer, Meir J.
AU - Shai, Iris
N1 - Publisher Copyright:
© 2017 Gepner et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2017/11/1
Y1 - 2017/11/1
N2 - Background: Intramyocellular triacylglycerol (IMTG) is utilized as metabolic fuel during exercise and is linked to insulin resistance, but the long-term effect of weight loss strategies on IMTG among participants with abdominal fat, remain unclear. Methods: In an 18-month trial, sedentary participants with abdominal fat/dyslipidemia were randomized to either a low-fat (LF) or Mediterranean/low-carbohydrate (MED/LC) diet (including 28gday-1 of walnuts). After 6-months, the participants were re-randomized to moderate intense physical activity (PA+) or non-physical activity (PA-). Magnetic resonance imaging (MRI) was used to quantify changes of IMTG, abdominal sub-depots, hepatic and intermuscular fats. Results: Across the 277 participants [86% men, age = 48 years, body-mass-index (BMI) = 31kg/m2, visceral fat = 33%] 86% completed the 18-m trial. At baseline, women had higher IMTG than men (3.4% vs. 2.3%, p<0.001) and increased IMTG was associated with aging and higher BMI, visceral and intermuscular fats, HbA1c%, HDL-c and leptin(p<0.05), but not with intra-hepatic fat. After 18 month of intervention and a -3 kg mean weight loss, participants significantly increased IMTG by 25%, with a distinct effect in the MED/LCPA+ group as compared to the other intervention groups (57% vs. 9.5–18.5%, p<0.05). Changes in IMTG were associated with visceral and intermuscular fat, metabolic syndrome, insulin and leptin (p<0.05 for all), however, these associations did not remain after adjustment for visceral fat changes. Conclusions: Lifestyle strategies differentially affect IMTG accumulation; combination of exercise with decreased carbohydrate/increased unsaturated fat proportion intake greatly increase IMTG. Our findings suggest that increased IMTG during diet-induced moderate weight loss may not be directly related to cardiometabolic risk. Trial registration: ClinicalTrials.gov
AB - Background: Intramyocellular triacylglycerol (IMTG) is utilized as metabolic fuel during exercise and is linked to insulin resistance, but the long-term effect of weight loss strategies on IMTG among participants with abdominal fat, remain unclear. Methods: In an 18-month trial, sedentary participants with abdominal fat/dyslipidemia were randomized to either a low-fat (LF) or Mediterranean/low-carbohydrate (MED/LC) diet (including 28gday-1 of walnuts). After 6-months, the participants were re-randomized to moderate intense physical activity (PA+) or non-physical activity (PA-). Magnetic resonance imaging (MRI) was used to quantify changes of IMTG, abdominal sub-depots, hepatic and intermuscular fats. Results: Across the 277 participants [86% men, age = 48 years, body-mass-index (BMI) = 31kg/m2, visceral fat = 33%] 86% completed the 18-m trial. At baseline, women had higher IMTG than men (3.4% vs. 2.3%, p<0.001) and increased IMTG was associated with aging and higher BMI, visceral and intermuscular fats, HbA1c%, HDL-c and leptin(p<0.05), but not with intra-hepatic fat. After 18 month of intervention and a -3 kg mean weight loss, participants significantly increased IMTG by 25%, with a distinct effect in the MED/LCPA+ group as compared to the other intervention groups (57% vs. 9.5–18.5%, p<0.05). Changes in IMTG were associated with visceral and intermuscular fat, metabolic syndrome, insulin and leptin (p<0.05 for all), however, these associations did not remain after adjustment for visceral fat changes. Conclusions: Lifestyle strategies differentially affect IMTG accumulation; combination of exercise with decreased carbohydrate/increased unsaturated fat proportion intake greatly increase IMTG. Our findings suggest that increased IMTG during diet-induced moderate weight loss may not be directly related to cardiometabolic risk. Trial registration: ClinicalTrials.gov
UR - http://www.scopus.com/inward/record.url?scp=85036575287&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0188431
DO - 10.1371/journal.pone.0188431
M3 - Article
C2 - 29190720
AN - SCOPUS:85036575287
SN - 1932-6203
VL - 12
JO - PLoS ONE
JF - PLoS ONE
IS - 11
M1 - e0188431
ER -