Intron retention is a major phenomenon in alternative splicing in Arabidopsis

Hadas Ner-Gaon, Ronit Halachmi, Sigal Savaldi-Goldstein, Eitan Rubin, Ron Ophir, Robert Fluhr

Research output: Contribution to journalArticlepeer-review

261 Scopus citations


Alternative splicing (AS) combines different transcript splice junctions that result in transcripts with shuffled exons, alternative 5′ or 3′ splicing sites, retained introns and different transcript termini. In this way, multiple mRNA species and proteins can be created from a single gene expanding the potential informational content of eukaryotic genomes. Search algorithms of AS forms in a variety of Arabidopsis databases showed they contained an unusually high fraction of retained introns (above 30%), compared with 10% that was reported for humans. The preponderance of retained introns (65%) were either part of open reading frames, present in the UTR region or present as the last intron in the transcript, indicating that their occurrence would not participate in non-sense-mediated decay. Interestingly, the functional distribution of the transcripts with retained introns is skewed towards stress and external/internal stimuli-related functions. A sampling of the alternative transcripts with retained introns were confirmed by RT-PCR and were shown to co-purify with polyribosomes, indicating their nuclear export. Thus, retained introns are a prominent feature of AS in Arabidopsis and as such may play a regulatory function.

Original languageEnglish
Pages (from-to)877-885
Number of pages9
JournalPlant Journal
Issue number6
StatePublished - 1 Sep 2004
Externally publishedYes


  • Bioinformatics
  • Databases
  • Expressed sequence tag
  • Polyribosome
  • Splicing
  • Transcript

ASJC Scopus subject areas

  • Genetics
  • Plant Science
  • Cell Biology


Dive into the research topics of 'Intron retention is a major phenomenon in alternative splicing in Arabidopsis'. Together they form a unique fingerprint.

Cite this