TY - GEN
T1 - Iterative-deepening Bidirectional Heuristic Search with Restricted Memory
AU - Shperberg, Shahaf S.
AU - Danishevski, Steven
AU - Felner, Ariel
AU - Sturtevant, Nathan R.
N1 - Publisher Copyright:
Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2021/1/1
Y1 - 2021/1/1
N2 - The field of bidirectional heuristic search has recently seen great advances. However, the subject of memory-restricted bidirectional search has not received recent attention. In this paper we introduce a general iterative deepening bidirectional heuristic search algorithm (IDBiHS) that searches simultaneously in both directions while controlling the meeting point of the search frontiers. First, we present the basic variant of IDBiHS, whose memory is linear in the search depth. We then add improvements that exploit consistency and front-to-front heuristics. Next, we move to the case where a fixed amount of memory is available to store nodes during the search and develop two variants of IDBiHS: (1) A∗+IDBiHS, that starts with A∗and moves to IDBiHS as soon as memory is exhausted. (2) A variant that stores partial forward frontiers until memory is exhausted and then tries to match each of them from the backward side. Finally, we experimentally compare the new algorithms to existing unidirectional and bidirectional ones. In many cases our new algorithms outperform previous ones in both node expansions and time.
AB - The field of bidirectional heuristic search has recently seen great advances. However, the subject of memory-restricted bidirectional search has not received recent attention. In this paper we introduce a general iterative deepening bidirectional heuristic search algorithm (IDBiHS) that searches simultaneously in both directions while controlling the meeting point of the search frontiers. First, we present the basic variant of IDBiHS, whose memory is linear in the search depth. We then add improvements that exploit consistency and front-to-front heuristics. Next, we move to the case where a fixed amount of memory is available to store nodes during the search and develop two variants of IDBiHS: (1) A∗+IDBiHS, that starts with A∗and moves to IDBiHS as soon as memory is exhausted. (2) A variant that stores partial forward frontiers until memory is exhausted and then tries to match each of them from the backward side. Finally, we experimentally compare the new algorithms to existing unidirectional and bidirectional ones. In many cases our new algorithms outperform previous ones in both node expansions and time.
UR - http://www.scopus.com/inward/record.url?scp=85124663035&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85124663035
T3 - Proceedings International Conference on Automated Planning and Scheduling, ICAPS
SP - 331
EP - 339
BT - 31st International Conference on Automated Planning and Scheduling, ICAPS 2021
A2 - Biundo, Susanne
A2 - Do, Minh
A2 - Goldman, Robert
A2 - Katz, Michael
A2 - Yang, Qiang
A2 - Zhuo, Hankz Hankui
PB - Association for the Advancement of Artificial Intelligence
T2 - 31st International Conference on Automated Planning and Scheduling, ICAPS 2021
Y2 - 2 August 2021 through 13 August 2021
ER -