J/ψ suppression at forward rapidity in Au + Au collisions at √sNN=200 GeV

PHENIX Collaboration

Research output: Contribution to journalArticlepeer-review

201 Scopus citations

Abstract

Heavy quarkonia are observed to be suppressed in relativistic heavy-ion collisions relative to their production in p+p collisions scaled by the number of binary collisions. In order to determine if this suppression is related to color screening of these states in the produced medium, one needs to account for other nuclear modifications including those in cold nuclear matter. In this paper, we present new measurements from the PHENIX 2007 data set of J/ψ yields at forward rapidity (1.2<|y|<2.2) in Au+Au collisions at √sNN=200 GeV. The data confirm the earlier finding that the suppression of J/ψ at forward rapidity is stronger than at midrapidity, while also extending the measurement to finer bins in collision centrality and higher transverse momentum (pT). We compare the experimental data to the most recent theoretical calculations that incorporate a variety of physics mechanisms including gluon saturation, gluon shadowing, initial-state parton energy loss, cold nuclear matter breakup, color screening, and charm recombination. We find J/ψ suppression beyond cold-nuclear-matter effects. However, the current level of disagreement between models and d+Au data precludes using these models to quantify the hot-nuclear-matter suppression.

Original languageEnglish
Article number054912
JournalPhysical Review C - Nuclear Physics
Volume84
Issue number5
DOIs
StatePublished - 21 Nov 2011
Externally publishedYes

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'J/ψ suppression at forward rapidity in Au + Au collisions at √sNN=200 GeV'. Together they form a unique fingerprint.

Cite this