Jacobson-Morozov Lemma for Algebraic Supergroups

Inna Entova-Aizenbud, Vera Serganova

Research output: Working paper/PreprintPreprint

Abstract

Given a quasi-reductive algebraic supergroup $G$, we use the theory of semisimplifications of symmetric monoidal categories to define a symmetric monoidal functor $\Phi_x: \Rep(G) \to \Rep(OSp(1|2))$ associated to any given element $x \in \mathrm{Lie}(G)_{\bar 1}$. For nilpotent elements $x$, we show that the functor $\Phi_x$ can be defined using the Deligne filtration associated to $x$. We use this approach to prove an analogue of the Jacobson-Morozov Lemma for algebraic supergroups. Namely, we give a necessary and sufficient condition on odd nilpotent elements $x\in \mathrm{Lie}(G)_{\bar 1}$ which define an embedding of supergroups $OSp(1|2)\to G$ so that $x$ lies in the image of the corresponding Lie algebra homomorphism.
Original languageEnglish
StatePublished - 2020

Publication series

NameArxiv preprint

Keywords

  • Mathematics - Representation Theory

Fingerprint

Dive into the research topics of 'Jacobson-Morozov Lemma for Algebraic Supergroups'. Together they form a unique fingerprint.

Cite this