TY - JOUR
T1 - Kelvin probe force microscopy of semiconductor surface defects
AU - Rosenwaks, Y.
AU - Shikler, R.
AU - Glatzel, Th
AU - Sadewasser, S.
N1 - Funding Information:
PRBMDO 0163-1829 53 , 10 894 ( 1996 ). This research was conducted within the 5th European research network Herculas, and the authors acknowledge fruitful discussions with Professor M. Molotskii.
PY - 2004/1/1
Y1 - 2004/1/1
N2 - We present a comprehensive three-dimensional analysis of Kelvin probe force microscopy of semiconductors. It is shown that high-resolution electronic defect imaging is strongly affected by free carrier electrostatic screening, and the finite size of the measuring tip. In measurements conducted under ambient conditions, defects that are not more then 2 nanometers below the surface, and are at least 50 nanometers apart can be imaged only if the tip-sample distance is not larger then 10 nanometers. Under ultrahigh vacuum conditions, when the tip-sample distance can be as small as 1 nanometer, it is shown that the tip-induced band bending is only around a few millivolts, and can be neglected for most practical purposes. Our model is compared to ultrahigh vacuum Kelvin probe force microscopy measurements of surface steps on GaP, and it is shown that it can be used to obtain local surface charge densities.
AB - We present a comprehensive three-dimensional analysis of Kelvin probe force microscopy of semiconductors. It is shown that high-resolution electronic defect imaging is strongly affected by free carrier electrostatic screening, and the finite size of the measuring tip. In measurements conducted under ambient conditions, defects that are not more then 2 nanometers below the surface, and are at least 50 nanometers apart can be imaged only if the tip-sample distance is not larger then 10 nanometers. Under ultrahigh vacuum conditions, when the tip-sample distance can be as small as 1 nanometer, it is shown that the tip-induced band bending is only around a few millivolts, and can be neglected for most practical purposes. Our model is compared to ultrahigh vacuum Kelvin probe force microscopy measurements of surface steps on GaP, and it is shown that it can be used to obtain local surface charge densities.
UR - http://www.scopus.com/inward/record.url?scp=19544376453&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.70.085320
DO - 10.1103/PhysRevB.70.085320
M3 - Article
AN - SCOPUS:19544376453
SN - 0163-1829
VL - 70
SP - 085320-1-085320-7
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 8
M1 - 085320
ER -