TY - JOUR
T1 - Kinase signaling cascades
T2 - an updated mechanistic landscape
AU - Nussinov, Ruth
AU - Regev, Clil
AU - Jang, Hyunbum
N1 - Publisher Copyright:
© 2025 The Royal Society of Chemistry.
PY - 2025/9/10
Y1 - 2025/9/10
N2 - Here, we shed physico-chemical light on major kinase signal transduction cascades in cell proliferation in the Ras network, MAPK and PI3K/AKT/mTOR. The cascades respond to external stimuli. The kinases are allosterically activated and relay the signal, leading to cell growth and division. The pathways are crosslinked, with the output of one pathway influencing the other. The effectiveness of their allosteric signaling relay stems from coordinated speed and precision. These qualities are essential for cell life—yet exactly how they are obtained and regulated has challenged the community over four decades. Here, we define their nature by their kinases' repertoires, substrate specificities and breadth, activation and autoinhibition mechanisms, catalytic rates, interactions, and their dilution state. The cascades are lodged in a dense molecular condensate phase at the membrane adjoining RTK clusters, where their assemblies promote specific, productive signaling. Aiming to shed further physico-chemical light, we ask (i) how starting the cascades with a single substrate and ending with hundreds is still labeled specific; (ii) what we can learn from their different number of mutations; and (iii) why B-Raf unique side-to-side inverse dimerization slows ERK activation and signaling. We point to the (iv) chemical mechanics of the distributions of rates of the crucial MAPK cascade: slower at the top and rapid at the bottom. Finally, the cascades provide inspiration for pharmacological perspectives. Collectively, our updated physico-chemical outlook provides the molecular basis of targeting protein kinases in cancer and spans mechanisms and scales, from conformational landscapes to membraneless organelles, cells and systems levels.
AB - Here, we shed physico-chemical light on major kinase signal transduction cascades in cell proliferation in the Ras network, MAPK and PI3K/AKT/mTOR. The cascades respond to external stimuli. The kinases are allosterically activated and relay the signal, leading to cell growth and division. The pathways are crosslinked, with the output of one pathway influencing the other. The effectiveness of their allosteric signaling relay stems from coordinated speed and precision. These qualities are essential for cell life—yet exactly how they are obtained and regulated has challenged the community over four decades. Here, we define their nature by their kinases' repertoires, substrate specificities and breadth, activation and autoinhibition mechanisms, catalytic rates, interactions, and their dilution state. The cascades are lodged in a dense molecular condensate phase at the membrane adjoining RTK clusters, where their assemblies promote specific, productive signaling. Aiming to shed further physico-chemical light, we ask (i) how starting the cascades with a single substrate and ending with hundreds is still labeled specific; (ii) what we can learn from their different number of mutations; and (iii) why B-Raf unique side-to-side inverse dimerization slows ERK activation and signaling. We point to the (iv) chemical mechanics of the distributions of rates of the crucial MAPK cascade: slower at the top and rapid at the bottom. Finally, the cascades provide inspiration for pharmacological perspectives. Collectively, our updated physico-chemical outlook provides the molecular basis of targeting protein kinases in cancer and spans mechanisms and scales, from conformational landscapes to membraneless organelles, cells and systems levels.
UR - https://www.scopus.com/pages/publications/105015597547
U2 - 10.1039/d5sc04657b
DO - 10.1039/d5sc04657b
M3 - Review article
C2 - 40880801
AN - SCOPUS:105015597547
SN - 2041-6520
VL - 16
SP - 15815
EP - 15835
JO - Chemical Science
JF - Chemical Science
IS - 35
ER -