Kinetic experiments and modeling of a complex DeNO system: Decane selective catalytic reduction of NOx in the gas phase and over an Fe-MFI type zeolite catalyst

Leonid Vradman, Moti Herskowitz, Libor Čapek, Blanka Wichterlova, Roald Brosius, Johan A. Martens

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

The reduction of NOx in the gas phase (in a NO-NO 2-decane-water-O2 mixture) and over a Fe-MFI type zeolite catalyst was extensively studied under a wide range of temperatures, gas hourly space velocities, and concentrations. The Fe-MFI zeolite (Si/Al 12.5 and Fe/Al 0.31) was prepared by solid-state ion exchange. The decane selective catalytic reductions (decane-SCRs) of NO and NO2 were carried out with a reaction mixture consisting of 1000 ppm NOx, 300 ppm C 10H22, 6.0% O2, and 0 or 12.0% H2O at gas hourly space velocity values of 15 000-60 000 h-1 and temperatures of 150-450 °C. Under the experimentally investigated reaction conditions, there was no N2 formation in the bulk gas phase. Water vapor had little effect on the N2 yield in decane-SCR of NO x. The kinetic description of the homogeneous system included reactions between NO2 and decane with the formation of NO, CO, and CO2 and a pseudocompound "C3H6O 1.8" lumping all oxygenated, olefmic, and paraffinic hydrocarbon products. The heterogeneous system accounts for two distinct functions of the Fe-loaded zeolite catalyst: NO oxidation and SCR of NO2 with decane and C3HeO1.8, yielding N2, NO, CO, and CO 2. This kinetic description yielded a good fit of experimental data. The rates of heterogeneous reactions were higher than the rates of homogeneous reactions by 1-3 orders of magnitude. Among catalytic reactions, the NO formation out of NO2 was the fastest reaction, which is the main reason for the relatively low nitrogen yield (<40%). The NO oxidation function of the Fe-MFI catalyst is insufficient, while a high oxidation rate is critical for improved N2 formation.

Original languageEnglish
Pages (from-to)4523-4533
Number of pages11
JournalIndustrial & Engineering Chemistry Research
Volume44
Issue number13
DOIs
StatePublished - 22 Jun 2005

Fingerprint

Dive into the research topics of 'Kinetic experiments and modeling of a complex DeNO system: Decane selective catalytic reduction of NOx in the gas phase and over an Fe-MFI type zeolite catalyst'. Together they form a unique fingerprint.

Cite this