TY - JOUR
T1 - Kinetic experiments and modeling of a complex DeNO system
T2 - Decane selective catalytic reduction of NOx in the gas phase and over an Fe-MFI type zeolite catalyst
AU - Vradman, Leonid
AU - Herskowitz, Moti
AU - Čapek, Libor
AU - Wichterlova, Blanka
AU - Brosius, Roald
AU - Martens, Johan A.
PY - 2005/6/22
Y1 - 2005/6/22
N2 - The reduction of NOx in the gas phase (in a NO-NO 2-decane-water-O2 mixture) and over a Fe-MFI type zeolite catalyst was extensively studied under a wide range of temperatures, gas hourly space velocities, and concentrations. The Fe-MFI zeolite (Si/Al 12.5 and Fe/Al 0.31) was prepared by solid-state ion exchange. The decane selective catalytic reductions (decane-SCRs) of NO and NO2 were carried out with a reaction mixture consisting of 1000 ppm NOx, 300 ppm C 10H22, 6.0% O2, and 0 or 12.0% H2O at gas hourly space velocity values of 15 000-60 000 h-1 and temperatures of 150-450 °C. Under the experimentally investigated reaction conditions, there was no N2 formation in the bulk gas phase. Water vapor had little effect on the N2 yield in decane-SCR of NO x. The kinetic description of the homogeneous system included reactions between NO2 and decane with the formation of NO, CO, and CO2 and a pseudocompound "C3H6O 1.8" lumping all oxygenated, olefmic, and paraffinic hydrocarbon products. The heterogeneous system accounts for two distinct functions of the Fe-loaded zeolite catalyst: NO oxidation and SCR of NO2 with decane and C3HeO1.8, yielding N2, NO, CO, and CO 2. This kinetic description yielded a good fit of experimental data. The rates of heterogeneous reactions were higher than the rates of homogeneous reactions by 1-3 orders of magnitude. Among catalytic reactions, the NO formation out of NO2 was the fastest reaction, which is the main reason for the relatively low nitrogen yield (<40%). The NO oxidation function of the Fe-MFI catalyst is insufficient, while a high oxidation rate is critical for improved N2 formation.
AB - The reduction of NOx in the gas phase (in a NO-NO 2-decane-water-O2 mixture) and over a Fe-MFI type zeolite catalyst was extensively studied under a wide range of temperatures, gas hourly space velocities, and concentrations. The Fe-MFI zeolite (Si/Al 12.5 and Fe/Al 0.31) was prepared by solid-state ion exchange. The decane selective catalytic reductions (decane-SCRs) of NO and NO2 were carried out with a reaction mixture consisting of 1000 ppm NOx, 300 ppm C 10H22, 6.0% O2, and 0 or 12.0% H2O at gas hourly space velocity values of 15 000-60 000 h-1 and temperatures of 150-450 °C. Under the experimentally investigated reaction conditions, there was no N2 formation in the bulk gas phase. Water vapor had little effect on the N2 yield in decane-SCR of NO x. The kinetic description of the homogeneous system included reactions between NO2 and decane with the formation of NO, CO, and CO2 and a pseudocompound "C3H6O 1.8" lumping all oxygenated, olefmic, and paraffinic hydrocarbon products. The heterogeneous system accounts for two distinct functions of the Fe-loaded zeolite catalyst: NO oxidation and SCR of NO2 with decane and C3HeO1.8, yielding N2, NO, CO, and CO 2. This kinetic description yielded a good fit of experimental data. The rates of heterogeneous reactions were higher than the rates of homogeneous reactions by 1-3 orders of magnitude. Among catalytic reactions, the NO formation out of NO2 was the fastest reaction, which is the main reason for the relatively low nitrogen yield (<40%). The NO oxidation function of the Fe-MFI catalyst is insufficient, while a high oxidation rate is critical for improved N2 formation.
UR - http://www.scopus.com/inward/record.url?scp=22444432591&partnerID=8YFLogxK
U2 - 10.1021/ie050337f
DO - 10.1021/ie050337f
M3 - Article
AN - SCOPUS:22444432591
VL - 44
SP - 4523
EP - 4533
JO - Industrial & Engineering Chemistry Product Research and Development
JF - Industrial & Engineering Chemistry Product Research and Development
SN - 0888-5885
IS - 13
ER -