Kinetics of dislocation cross-slip: A molecular dynamics study

E. Oren, E. Yahel, G. Makov

Research output: Contribution to journalArticlepeer-review

14 Scopus citations


The kinetics of cross-slip and annihilation of a screw dislocation dipole in face-centered cubic (FCC) copper crystals were studied by multiple molecular-dynamics simulations of long (200b) dislocations at selected stresses and temperatures with the aim to account for the thermally activated nature of the cross-slip process. A novel cross-slip mechanism was identified; this mechanism required the formation of a finite length constriction before cross-slip could be initiated. It was shown that point constrictions are not the transition state of cross-slip. A study of the kinetics confirmed that cross-slip is a first-order process. By fitting the rate constant to an Arrhenius form, the activation energy was found to be 1.05eV±15%. The activation volume for the Escaig stress in the glide plane was in the range of 5–40b3, and the prefactor for the rate constant was evaluated to be 1 THz/b.

Original languageEnglish
Pages (from-to)246-254
Number of pages9
JournalComputational Materials Science
StatePublished - 1 Oct 2017


  • Cross-slip
  • Dislocations
  • Kinetics
  • Molecular dynamics simulations
  • Thermally activated processes


Dive into the research topics of 'Kinetics of dislocation cross-slip: A molecular dynamics study'. Together they form a unique fingerprint.

Cite this