Abstract
We investigate theoretically a mechanically assisted Kondo effect and electric charge shuttling in a nanoelectromechanical single-electron transistor. It is shown that the mechanical motion of the central island (a small metallic particle) with the spin results in a time-dependent tunneling width Γ (t) which leads to an effective increase of the Kondo temperature. The time-dependent oscillating Kondo temperature TK (t) changes the scaling behavior of the differential conductance, resulting in the suppression of transport in a strong-coupling and its enhancement in a weak-coupling regime. The conditions for fine-tuning of the Abrikosov-Suhl resonance and possible experimental realization of the Kondo shuttling are discussed.
Original language | English |
---|---|
Article number | 233403 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 74 |
Issue number | 23 |
DOIs | |
State | Published - 20 Dec 2006 |