Large-amplitude transfer motion of hydrated excess protons mapped by ultrafast 2D IR spectroscopy

Fabian Dahms, Benjamin P. Fingerhut, Erik T.J. Nibbering, Ehud Pines, Thomas Elsaesser

Research output: Contribution to journalArticlepeer-review

84 Scopus citations


Solvation and transport of excess protons in aqueous systems play a fundamental role in acid-base chemistry and biochemical processes. We mapped ultrafast proton excursions along the proton transfer coordinate by means of two-dimensional infrared spectroscopy, both in bulk water and in a Zundel cation (H5O2)+ motif selectively prepared in acetonitrile. Electric fields from the environment and stochastic hydrogen bond motions induce fluctuations of the proton double-minimum potential. Within the lifetime of a particular hydration geometry, the proton explores a multitude of positions on a sub-100-femtosecond time scale. The proton transfer vibration is strongly damped by its 20- to 40-femtosecond population decay. Our results suggest a central role of Zundel-like geometries in aqueous proton solvation and transport.

Original languageEnglish
Pages (from-to)491-495
Number of pages5
Issue number6350
StatePublished - 4 Aug 2017


Dive into the research topics of 'Large-amplitude transfer motion of hydrated excess protons mapped by ultrafast 2D IR spectroscopy'. Together they form a unique fingerprint.

Cite this