TY - GEN
T1 - Learned Super Resolution Ultrasound for Improved Breast Lesion Characterization
AU - Bar-Shira, Or
AU - Grubstein, Ahuva
AU - Rapson, Yael
AU - Suhami, Dror
AU - Atar, Eli
AU - Peri-Hanania, Keren
AU - Rosen, Ronnie
AU - Eldar, Yonina C.
N1 - Publisher Copyright:
© 2021, Springer Nature Switzerland AG.
PY - 2021/1/1
Y1 - 2021/1/1
N2 - Breast cancer is the most common malignancy in women. Mammographic findings such as microcalcifications and masses, as well as morphologic features of masses in sonographic scans, are the main diagnostic targets for tumor detection. However, improved specificity of these imaging modalities is required. A leading alternative target is neoangiogenesis. When pathological, it contributes to the development of numerous types of tumors, and the formation of metastases. Hence, demonstrating neoangiogenesis by visualization of the microvasculature may be of great importance. Super resolution ultrasound localization microscopy enables imaging of the microvasculature at the capillary level. Yet, challenges such as long reconstruction time, dependency on prior knowledge of the system Point Spread Function (PSF), and separability of the Ultrasound Contrast Agents (UCAs), need to be addressed for translation of super-resolution US into the clinic. In this work we use a deep neural network architecture that makes effective use of signal structure to address these challenges. We present in vivo human results of three different breast lesions acquired with a clinical US scanner. By leveraging our trained network, the microvasculature structure is recovered in a short time, without prior PSF knowledge, and without requiring separability of the UCAs. Each of the recoveries exhibits a different structure that corresponds with the known histological structure. This study demonstrates the feasibility of in vivo human super resolution, based on a clinical scanner, to increase US specificity for different breast lesions and promotes the use of US in the diagnosis of breast pathologies.
AB - Breast cancer is the most common malignancy in women. Mammographic findings such as microcalcifications and masses, as well as morphologic features of masses in sonographic scans, are the main diagnostic targets for tumor detection. However, improved specificity of these imaging modalities is required. A leading alternative target is neoangiogenesis. When pathological, it contributes to the development of numerous types of tumors, and the formation of metastases. Hence, demonstrating neoangiogenesis by visualization of the microvasculature may be of great importance. Super resolution ultrasound localization microscopy enables imaging of the microvasculature at the capillary level. Yet, challenges such as long reconstruction time, dependency on prior knowledge of the system Point Spread Function (PSF), and separability of the Ultrasound Contrast Agents (UCAs), need to be addressed for translation of super-resolution US into the clinic. In this work we use a deep neural network architecture that makes effective use of signal structure to address these challenges. We present in vivo human results of three different breast lesions acquired with a clinical US scanner. By leveraging our trained network, the microvasculature structure is recovered in a short time, without prior PSF knowledge, and without requiring separability of the UCAs. Each of the recoveries exhibits a different structure that corresponds with the known histological structure. This study demonstrates the feasibility of in vivo human super resolution, based on a clinical scanner, to increase US specificity for different breast lesions and promotes the use of US in the diagnosis of breast pathologies.
KW - Breast cancer
KW - Deep learning
KW - Super resolution ultrasound
UR - http://www.scopus.com/inward/record.url?scp=85116465879&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-87234-2_11
DO - 10.1007/978-3-030-87234-2_11
M3 - Conference contribution
AN - SCOPUS:85116465879
SN - 9783030872335
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 109
EP - 118
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 - 24th International Conference, Proceedings
A2 - de Bruijne, Marleen
A2 - Cattin, Philippe C.
A2 - Cotin, Stéphane
A2 - Padoy, Nicolas
A2 - Speidel, Stefanie
A2 - Zheng, Yefeng
A2 - Essert, Caroline
PB - Springer Science and Business Media Deutschland GmbH
T2 - 24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021
Y2 - 27 September 2021 through 1 October 2021
ER -