Learning Electricity through Constructing Computational Models of Complex Systems

Janan Saba, Elon Langbeheim, Hagit Hel-Or, Sharona T Levy

Research output: Chapter in Book/Report/Conference proceedingChapter

Abstract

The paper explores students' learning of electric circuit in physics through constructing computational models of complex systems using Much. Matter in Motion platform. This study focuses on development of mental models that associate properties of a circuit at the macro level with elements at the micro level. We compared the learning of electricity, systems components by eighth-grade students using the MMM platform with students’ learning following a normative curriculum using textbooks. Results show that the experimental group successfully cultivated their learning at the micro level more than the comparison group and their reasoning included connecting between the macro and micro levels. Using clustering methods, a novel progression of five mental models were found that can provide for better scaffolding of learning electricity. (מתוך המאמר)
Translated title of the contributionלמידת חשמל תוך בנייה של של מודלים חישוביים אודות מערכות מורכבות
Original languageEnglish
Title of host publicationהאדם הלומד בעידן הדיגיטלי
Subtitle of host publicationספר הכנס השישה-עשר לחקר חדשנות וטכנולוגיות למידה ע"ש צ'ייס
Editorsאינה בלאו, אבנר כספי, יורם עשת-אלקלעי, ניצה גרי, יורם קלמן, תרצה לוטרמן
Place of Publicationרעננה
Publisherהאוניברסיטה הפתוחה
Pages3E-15E
Number of pages13
Volume16
StatePublished - 16 Feb 2021

Fingerprint

Dive into the research topics of 'Learning Electricity through Constructing Computational Models of Complex Systems'. Together they form a unique fingerprint.

Cite this