TY - GEN
T1 - Lesser-known piezoelectric and pyroelectric applications of electroactive polymers
AU - Lang, Sidney B.
AU - Muensit, Supasarote
PY - 2006/5/8
Y1 - 2006/5/8
N2 - The piezoelectric effect was first observed in polyvinylidene fluoride polymer (PVDF) in 1969 and the pyroelectric effect was found several years later. A number of additional ferroelectric polymers have been discovered since that time including the copolymer PVDF with trifluoroethylene (P(VDF-TrFE)), and the odd-numbered nylons. A large number of applications of piezoelectricity and pyroelectricity have been developed. The magnitudes of the effects in polymers are much lower than those of ferroelectric ceramics (an exception is the piezoelectric effect in porous polymers). However, other factors make these very desirable materials for applications. The polymers have low permittivities, low acoustic impedances and low thermal conductivities. They are available in large area sheets and they are flexible and relatively low in cost. Major applications include microphones and loudspeakers, ultrasonic devices, SAW transducers, actuators, infrared detectors and many others. This review will describe some of the lesser-known applications of these materials in the fields of tactile devices, energy conversion, porous polymers, property measurement, pyroelectric infrared sensors, shock sensors and space science.
AB - The piezoelectric effect was first observed in polyvinylidene fluoride polymer (PVDF) in 1969 and the pyroelectric effect was found several years later. A number of additional ferroelectric polymers have been discovered since that time including the copolymer PVDF with trifluoroethylene (P(VDF-TrFE)), and the odd-numbered nylons. A large number of applications of piezoelectricity and pyroelectricity have been developed. The magnitudes of the effects in polymers are much lower than those of ferroelectric ceramics (an exception is the piezoelectric effect in porous polymers). However, other factors make these very desirable materials for applications. The polymers have low permittivities, low acoustic impedances and low thermal conductivities. They are available in large area sheets and they are flexible and relatively low in cost. Major applications include microphones and loudspeakers, ultrasonic devices, SAW transducers, actuators, infrared detectors and many others. This review will describe some of the lesser-known applications of these materials in the fields of tactile devices, energy conversion, porous polymers, property measurement, pyroelectric infrared sensors, shock sensors and space science.
UR - http://www.scopus.com/inward/record.url?scp=33646176344&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:33646176344
SN - 1558998438
SN - 9781558998438
T3 - Materials Research Society Symposium Proceedings
SP - 3
EP - 14
BT - Materials Research Society Symposium Proceedings
T2 - 2005 Materials Research Society Fall Meeting
Y2 - 28 November 2005 through 1 December 2005
ER -