Abstract
T cell entry into inflamed tissue requires firm adhesion, cell spreading, and migration along and through the endothelial wall. These events require the T cell integrins LFA-1 and VLA-4 and their endothelial ligands ICAM-1 and VCAM-1, respectively. T cells migrate against the direction of shear flow on ICAM-1 and with the direction of shear flow on VCAM-1, suggesting that these two ligands trigger distinct cellular responses. However, the contribution of specific signaling events downstream of LFA-1 and VLA-4 has not been explored. Using primary mouse T cells, we found that engagement of LFA-1, but not VLA-4, induces cell shape changes associated with rapid 2D migration. Moreover, LFA-1 ligation results in activation of the phosphoinositide 3-kinase (PI3K) and ERK pathways, and phosphorylation of multiple kinases and adaptor proteins, whereas VLA-4 ligation triggers only a subset of these signaling events. Importantly, T cells lacking Crk adaptor proteins, key LFA-1 signaling intermediates, or the ubiquitin ligase cCbl (also known as CBL), failed to migrate against the direction of shear flow on ICAM-1. These studies identify novel signaling differences downstream of LFA-1 and VLA-4 that drive T cell migratory behavior.
Original language | English |
---|---|
Article number | jcs248328 |
Journal | Journal of Cell Science |
Volume | 133 |
Issue number | 17 |
DOIs | |
State | Published - 1 Sep 2020 |
Externally published | Yes |
Keywords
- Actin
- Integrins
- Migration
- Shear flow
- Signaling
- T cell
ASJC Scopus subject areas
- Cell Biology