TY - GEN
T1 - Lifted MEU by weighted model counting
AU - Apsel, Udi
AU - Brafman, Ronen I.
PY - 2012/11/7
Y1 - 2012/11/7
N2 - Recent work in the field of probabilistic inference demonstrated the efficiency of weighted model counting (WMC) engines for exact inference in propositional and, very recently, first order models. To date, these methods have not been applied to decision making models, propositional or first order, such as influence diagrams, and Markov decision networks (MDN). In this paper we show how this technique can be applied to such models. First, we show how WMC can be used to solve (propositional) MDNs. Then, we show how this can be extended to handle a first-order model - the Markov Logic Decision Network (MLDN). WMC offers two central benefits: it is a very simple and very efficient technique. This is particularly true for the first-order case, where the WMC approach is simpler conceptually, and, in many cases, more effective computationally than the existing methods for solving MLDNs via first-order variable elimination, or via propositionalization. We demonstrate the above empirically.
AB - Recent work in the field of probabilistic inference demonstrated the efficiency of weighted model counting (WMC) engines for exact inference in propositional and, very recently, first order models. To date, these methods have not been applied to decision making models, propositional or first order, such as influence diagrams, and Markov decision networks (MDN). In this paper we show how this technique can be applied to such models. First, we show how WMC can be used to solve (propositional) MDNs. Then, we show how this can be extended to handle a first-order model - the Markov Logic Decision Network (MLDN). WMC offers two central benefits: it is a very simple and very efficient technique. This is particularly true for the first-order case, where the WMC approach is simpler conceptually, and, in many cases, more effective computationally than the existing methods for solving MLDNs via first-order variable elimination, or via propositionalization. We demonstrate the above empirically.
UR - http://www.scopus.com/inward/record.url?scp=84868292472&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84868292472
SN - 9781577355687
T3 - Proceedings of the National Conference on Artificial Intelligence
SP - 1861
EP - 1867
BT - AAAI-12 / IAAI-12 - Proceedings of the 26th AAAI Conference on Artificial Intelligence and the 24th Innovative Applications of Artificial Intelligence Conference
T2 - 26th AAAI Conference on Artificial Intelligence and the 24th Innovative Applications of Artificial Intelligence Conference, AAAI-12 / IAAI-12
Y2 - 22 July 2012 through 26 July 2012
ER -