Ligand-Regulated Uptake of Dipolar-Aromatic Guests by Hydrophobically Assembled Suprasphere Hosts

Sourav Chakraborty, Chandan Kumar Tiwari, Yizhan Wang, Gal Gan-Or, Eyal Gadot, Ira A. Weinstock

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


The selective uptake of guests by capsules, cages, and containers, and porous solid-state materials such as zeolites and metal-organic frameworks (MOFs), is generally controlled by pore size and by the dimensions and chemical properties of interior host domains. For soluble and solid-state structures, however, few options are available for modifying their outer pores to impart chemoselectivity to the uptake of similarly sized guests. We now show that by using alkane-coated gold cores as structural building units (SBUs) for the hydrophobic self-assembly of water-soluble suprasphere hosts, ligand exchange can be used to tailor the chemical properties at the pores that provide access to their interiors. For polar polyethylene glycol functionalized ligands, occupancies after equal times increase linearly with the dipole moments of chloro-, nitro-dichloro-, and dinitro-(o-, m-, and p-) benzene guests. Selectivity is reversed, however, upon incorporation of hydrophobic ligands. The findings demonstrate how self-assembled gold-core SBUs, with replaceable ligands, inherently provide for rationally introducing finely tuned and quantitatively predictable chemoselectivity to host-guest chemistry in water.

Original languageEnglish
Pages (from-to)14078-14082
Number of pages5
JournalJournal of the American Chemical Society
Issue number36
StatePublished - 11 Sep 2019

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry


Dive into the research topics of 'Ligand-Regulated Uptake of Dipolar-Aromatic Guests by Hydrophobically Assembled Suprasphere Hosts'. Together they form a unique fingerprint.

Cite this