Abstract
Let X and Y be compact Hausdorff spaces and suppose that there exists a linear continuous surjection T:Cp(X)→Cp(Y), where Cp(X) denotes the space of all real-valued continuous functions on X endowed with the pointwise convergence topology. We prove that dimX=0 implies dimY=0. This generalizes a previous theorem [7, Theorem 3.4] for compact metrizable spaces. Also we point out that the function space Cp(P) over the pseudo-arc P admits no densely defined linear continuous operator Cp(P)→Cp([0,1]) with a dense image.
Original language | English |
---|---|
Pages (from-to) | 135-145 |
Number of pages | 11 |
Journal | Topology and its Applications |
Volume | 227 |
DOIs | |
State | Published - 15 Aug 2017 |
Keywords
- C-theory
- Dimension
- Hereditarily indecomposable continua
- Linear operators
ASJC Scopus subject areas
- Geometry and Topology