Linear-Size hopsets with small hopbound, and constant-hopbound hopsets in RNC

Research output: Contribution to journalArticlepeer-review


Hopsets are a fundamental graph-theoretic and graph-algorithmic construct, and they are widely used for distance-related problems in a variety of computational settings. Currently existing constructions of hopsets produce hopsets either with Ω (nlog n) edges, or with a hopbound nΩ (1). In this paper we devise a construction of linear-size hopsets with hopbound (ignoring the dependence on ϵ) (log log n) loglogn+O(1). This improves the previous hopbound for linear-size hopsets almost exponentially. We also devise efficient implementations of our construction in PRAM and distributed settings. The only existing PRAM algorithm [19] for computing hopsets with a constant (i.e., independent of n) hopbound requires nΩ (1) time. We devise a PRAM algorithm with polylogarithmic running time for computing hopsets with a constant hopbound, i.e., our running time is exponentially better than the previous one. Moreover, these hopsets are also significantly sparser than their counterparts from [19]. We apply these hopsets to achieve the following online variant of shortest paths in the PRAM model: preprocess a given weighted graph within polylogarithmic time, and then given any query vertex v, report all approximate shortest paths from v in constant time. All previous constructions of hopsets require either polylogarithmic time per query or polynomial preprocessing time.

Original languageEnglish
Pages (from-to)419-437
Number of pages19
JournalDistributed Computing
Issue number5
StatePublished - 1 Oct 2022

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Hardware and Architecture
  • Computer Networks and Communications
  • Computational Theory and Mathematics


Dive into the research topics of 'Linear-Size hopsets with small hopbound, and constant-hopbound hopsets in RNC'. Together they form a unique fingerprint.

Cite this