Lipase-Catalyzed Dissipative Self-Assembly of a Thixotropic Peptide Bolaamphiphile Hydrogel for Human Umbilical Cord Stem-Cell Proliferation

Apurba K. Das, Indrajit Maity, Hamendra S. Parmar, Tom O. McDonald, Maruthi Konda

Research output: Contribution to journalArticlepeer-review

42 Scopus citations

Abstract

We report lipase-catalyzed inclusion of p-hydroxy benzylalcohol to peptide bolaamphiphiles. The lipase-catalyzed reactions of peptide bolaamphiphiles with p-hydroxy benzylalcohol generate dynamic combinatorial libraries (DCL) in aqueous medium that mimic the natural dissipative system. The peptide bolaamphiphile 1 (HO-WY-Suc-YW-OH) reacts with p-hydroxy benzylalcohol in the presence of lipase forming an activated diester building block. The activated diester building block self-assembles to produce nanofibrillar thixotropic hydrogel. The subsequent hydrolysis results in the dissipation of energy to form nonassembling bolaamphiphile 1 with collapsed nanofibers. The thixotropic DCL hydrogel matrix is used for 3D cell culture experiments for different periods of time, significantly supporting the cell survival and proliferation of human umbilical cord mesenchymal stem cells. (Figure Presented).

Original languageEnglish
Pages (from-to)1157-1168
Number of pages12
JournalBiomacromolecules
Volume16
Issue number4
DOIs
StatePublished - 13 Apr 2015
Externally publishedYes

ASJC Scopus subject areas

  • Bioengineering
  • Biomaterials
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Lipase-Catalyzed Dissipative Self-Assembly of a Thixotropic Peptide Bolaamphiphile Hydrogel for Human Umbilical Cord Stem-Cell Proliferation'. Together they form a unique fingerprint.

Cite this