Abstract
Once the newly synthesized surface (S)-layer glycoprotein of the halophilic archaeaon Haloferax volcanii has traversed the plasma membrane, the protein undergoes a membrane-related, Mg2+-dependent maturation event, revealed as an increase in the apparent molecular mass and hydrophobicity of the protein. To test whether lipid modification of the S-layer glycoprotein could explain these observations, H. volcanii cells were incubated with a radiolabelled precursor of isoprene, [3H]mevalonic acid. In Archaea, isoprenoids serve as the major hydrophobic component of archaeal membrane lipids and have been shown to modify other haloarchaeal S-layer glycoproteins, although little is known of the mechanism, site or purpose of such modification. In the present study we report that the H. volcanii S-layer glycoprotein is modified by a derivative of mevalonic acid and that maturation of the protein was prevented upon treatment with mevinolin (lovastatin), an inhibitor of mevalonic acid biosynthesis. These findings suggest that lipid modification of S-layer glycoproteins is a general property of halophilic archaea and, like S-layer glycoprotein glycosylation, lipid-modification of the S-layer glycoproteins takes place on the external cell surface, i.e. following protein translocation across the membrane.
Original language | English |
---|---|
Pages (from-to) | 959-964 |
Number of pages | 6 |
Journal | Biochemical Journal |
Volume | 366 |
Issue number | 3 |
DOIs | |
State | Published - 15 Sep 2002 |
Keywords
- Halophilic archaea
- Isoprenylation
- Plasma membrane
- Post-translational modification
- Protein biosynthesis
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Cell Biology