@techreport{b77c2d5d4c36430fb5a6eaa70d0e5867,

title = "Lipschitz geometry of surface germs in $\mathbb{R}^4$: metric knots",

abstract = " A link at the origin of an isolated singularity of a two-dimensional semialgebraic surface in $\mathbb{R}^4$ is a topological knot (or link) in $S^3$. We study the connection between the ambient Lipschitz geometry of semialgebraic surface germs in $\mathbb{R}^4$ and the knot theory. Namely, for any knot $K$, we construct a surface $X_K$ in $\mathbb{R}^4$ such that: the link at the origin of $X_{K}$ is a trivial knot; the germs $X_K$ are outer bi-Lipschitz equivalent for all $K$; two germs $X_{K}$ and $X_{K'}$ are ambient bi-Lipschitz equivalent only if the knots $K$ and $K'$ are isotopic. We show that the Jones polynomial can be used to recognize ambient bi-Lipschitz non-equivalent surface germs in $\mathbb{R}^4$, even when they are topologically trivial and outer bi-Lipschitz equivalent. ",

keywords = "math.AG, math.GT, math.MG",

author = "Lev Birbrair and Michael Brandenbursky and Andrei Gabrielov",

note = "14 pages, 9 figures",

year = "2020",

language = "???core.languages.en_GB???",

series = "Arxiv preprint",

type = "WorkingPaper",

}