Lipschitz Recurrent Neural Networks

N. Benjamin Erichson, Omri Azencot, Alejandro Queiruga, Liam Hodgkinson, Michael W. Mahoney

Research output: Contribution to conferencePaper

42 Downloads (Pure)

Abstract

Viewing recurrent neural networks (RNNs) as continuous-time dynamical systems, we propose a recurrent unit that describes the hidden state's evolution with two parts: a well-understood linear component plus a Lipschitz nonlinearity. This particular functional form facilitates stability analysis of the long-term behavior of the recurrent unit using tools from nonlinear systems theory. In turn, this enables architectural design decisions before experimentation. Sufficient conditions for global stability of the recurrent unit are obtained, motivating a novel scheme for constructing hidden-to-hidden matrices. Our experiments demonstrate that the Lipschitz RNN can outperform existing recurrent units on a range of benchmark tasks, including computer vision, language modeling and speech prediction tasks. Finally, through Hessian-based analysis we demonstrate that our Lipschitz recurrent unit is more robust with respect to input and parameter perturbations as compared to other continuous-time RNNs.
Original languageEnglish
StatePublished - 2021
EventInternational Conference on Learning Representations -
Duration: 4 May 2021 → …

Conference

ConferenceInternational Conference on Learning Representations
Abbreviated titleICLR
Period4/05/21 → …

Keywords

  • cs.LG
  • math.DS
  • stat.ML

Fingerprint

Dive into the research topics of 'Lipschitz Recurrent Neural Networks'. Together they form a unique fingerprint.

Cite this