TY - JOUR
T1 - Livestock turnover and dynamic livestock carrying capacity are crucial factors for alpine grassland management
T2 - The Qinghai-Tibetan plateau as a case study
AU - Ding, Lu ming
AU - Yan, Qi
AU - Liu, Pei pei
AU - Yang, Qi en
AU - Henkin, Zalmen
AU - Degen, Abraham Allan
N1 - Publisher Copyright:
© 2024 Elsevier Ltd
PY - 2024/8/1
Y1 - 2024/8/1
N2 - Alpine grasslands are distributed widely on high-elevated ranges and plateaus from the wet tropics to polar regions, accounting for approximately 3% of the world's land area. The Qinghai-Tibetan Plateau (QTP) is the highest and largest plateau in the world, and approximately 60% of the plateau consists of alpine grassland, which is used mainly for grazing animals. Livestock structure was determined in Guinan (GN), Yushu (YS) and Maqu counties (MQ) on the QTP by interviewing 235 local pastoralists. Based on data collected from GN, the livestock carrying capacity was calculated using herbage dry matter biomass intake (LCCm) by the livestock, and the metabolizable energy yield (LCCe) and digestible crude protein (LCCp) available in pasture. The pasture area per household differed among the regions of the QTP, which was the main reason for the difference in livestock stocking rate. The householders raised the appropriate proportion of breeding females and young yaks and sheep in GN and MQ, but not in YS, to maintain a constant turnover. Most pasture in YS was used at the community level, especially in summer. The calculated carrying capacities based on metabolizable energy yield (LCCe) of the pasture and dry matter biomass (LCCm) were similar in most months except for August, when the value of LCCe was higher than LCCm. Based on the digestible protein of the pasture, the calculated livestock carrying capacity overestimated the actual carrying capacity during the herbage growing season from May to September. Appropriate practices should be taken in different regions of QTP, such as providing supplementary feed, especially protein, during the forage non-growing season. Livestock carrying capacity should be adjusted dynamically, and calculated by a number of parameters. The stocking rate should be controlled to optimize livestock production and curb or minimize grassland degradation to generate a sustainable system. This study examined the grasslands and LCC on the QTP, but the results could be applied to grasslands worldwide.
AB - Alpine grasslands are distributed widely on high-elevated ranges and plateaus from the wet tropics to polar regions, accounting for approximately 3% of the world's land area. The Qinghai-Tibetan Plateau (QTP) is the highest and largest plateau in the world, and approximately 60% of the plateau consists of alpine grassland, which is used mainly for grazing animals. Livestock structure was determined in Guinan (GN), Yushu (YS) and Maqu counties (MQ) on the QTP by interviewing 235 local pastoralists. Based on data collected from GN, the livestock carrying capacity was calculated using herbage dry matter biomass intake (LCCm) by the livestock, and the metabolizable energy yield (LCCe) and digestible crude protein (LCCp) available in pasture. The pasture area per household differed among the regions of the QTP, which was the main reason for the difference in livestock stocking rate. The householders raised the appropriate proportion of breeding females and young yaks and sheep in GN and MQ, but not in YS, to maintain a constant turnover. Most pasture in YS was used at the community level, especially in summer. The calculated carrying capacities based on metabolizable energy yield (LCCe) of the pasture and dry matter biomass (LCCm) were similar in most months except for August, when the value of LCCe was higher than LCCm. Based on the digestible protein of the pasture, the calculated livestock carrying capacity overestimated the actual carrying capacity during the herbage growing season from May to September. Appropriate practices should be taken in different regions of QTP, such as providing supplementary feed, especially protein, during the forage non-growing season. Livestock carrying capacity should be adjusted dynamically, and calculated by a number of parameters. The stocking rate should be controlled to optimize livestock production and curb or minimize grassland degradation to generate a sustainable system. This study examined the grasslands and LCC on the QTP, but the results could be applied to grasslands worldwide.
KW - Age structure
KW - Alpine pasture
KW - Dam
KW - Grazing
KW - Stocking rate
UR - http://www.scopus.com/inward/record.url?scp=85196815479&partnerID=8YFLogxK
U2 - 10.1016/j.jenvman.2024.121586
DO - 10.1016/j.jenvman.2024.121586
M3 - Article
C2 - 38941853
AN - SCOPUS:85196815479
SN - 0301-4797
VL - 365
JO - Journal of Environmental Management
JF - Journal of Environmental Management
M1 - 121586
ER -