Locality and availability of array codes constructed from subspaces

Natalia Silberstein, Tuvi Etzion, Moshe Schwartz

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Ever-increasing amounts of data are created and processed in internet-scale companies such as Google, Facebook, and Amazon. The efficient storage of such copious amounts of data has thus become a fundamental and acute problem in modern computing. No single machine can possibly satisfy such immense storage demands. Therefore, distributed storage systems (DSS), which rely on tens of thousands of storage nodes, are the only viable solution. Such systems are broadly used in all modern internet-scale systems. However, the design of a DSS poses a number of crucial challenges, markedly different from single-user storage systems. Such systems must be able to reconstruct the data efficiently, to overcome failure of servers, to correct errors, etc. Lots of research was done in the last few years to answer these challenges and the research is increasing in parallel to the increasing amount of stored data. The main goal of this paper is to consider codes which have two of the most important features of distributed storage systems, namely, locality and availability. Our codes are array codes which are based on subspaces of a linear space over a finite field. We present several constructions of such codes which are q-analog to some of the known block codes. Some of these codes possess independent intellectual merit. We examine the locality and availability of the constructed codes. In particular we distinguish between two types of locality and availability, node vs. symbol, locality and availability. To our knowledge this is the first time that such a distinction is given in the literature.

Original languageEnglish
Title of host publication2017 IEEE International Symposium on Information Theory, ISIT 2017
PublisherInstitute of Electrical and Electronics Engineers
Pages829-833
Number of pages5
ISBN (Electronic)9781509040964
DOIs
StatePublished - 9 Aug 2017
Event2017 IEEE International Symposium on Information Theory, ISIT 2017 - Aachen, Germany
Duration: 25 Jun 201730 Jun 2017

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8095

Conference

Conference2017 IEEE International Symposium on Information Theory, ISIT 2017
Country/TerritoryGermany
CityAachen
Period25/06/1730/06/17

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Locality and availability of array codes constructed from subspaces'. Together they form a unique fingerprint.

Cite this