TY - JOUR
T1 - Longitudinal volumetric evaluation of hippocampus and amygdala subregions in recent trauma survivors
AU - Ben-Zion, Ziv
AU - Korem, Nachshon
AU - Spiller, Tobias R
AU - Duek, Or
AU - Keynan, Jackob Nimrod
AU - Admon, Roee
AU - Harpaz-Rotem, Ilan
AU - Liberzon, Israel
AU - Shalev, Arieh Y
AU - Hendler, Talma
N1 - © 2022. The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2022/10/24
Y1 - 2022/10/24
N2 - The hippocampus and the amygdala play a central role in post-traumatic stress disorder (PTSD) pathogenesis. While alternations in volumes of both regions have been consistently observed in individuals with PTSD, it remains unknown whether these reflect pre-trauma vulnerability traits or acquired post-trauma consequences of the disorder. Here, we conducted a longitudinal panel study of adult civilian trauma survivors admitted to a general hospital emergency department (ED). One hundred eligible participants (mean age = 32.97 ± 10.97, n = 56 females) completed both clinical interviews and structural MRI scans at 1-, 6-, and 14-months after ED admission (alias T1, T2, and T3). While all participants met PTSD diagnosis at T1, only n = 29 still met PTSD diagnosis at T3 (a "non-Remission" Group), while n = 71 did not (a "Remission" Group). Bayesian multilevel modeling analysis showed robust evidence for smaller right hippocampus volume (P+ of ~0.014) and moderate evidence for larger left amygdala volume (P+ of ~0.870) at T1 in the "non-Remission" group, compared to the "Remission" group. Subregion analysis further demonstrated robust evidence for smaller volume in the subiculum and right CA1 hippocampal subregions (P+ of ~0.021-0.046) in the "non-Remission" group. No time-dependent volumetric changes (T1 to T2 to T3) were observed across all participants or between groups. Results support the "vulnerability trait" hypothesis, suggesting that lower initial volumes of specific hippocampus subregions are associated with non-remitting PTSD. The stable volume of all hippocampal and amygdala subregions does not support the idea of consequential, progressive, stress-related atrophy during the first critical year following trauma exposure.
AB - The hippocampus and the amygdala play a central role in post-traumatic stress disorder (PTSD) pathogenesis. While alternations in volumes of both regions have been consistently observed in individuals with PTSD, it remains unknown whether these reflect pre-trauma vulnerability traits or acquired post-trauma consequences of the disorder. Here, we conducted a longitudinal panel study of adult civilian trauma survivors admitted to a general hospital emergency department (ED). One hundred eligible participants (mean age = 32.97 ± 10.97, n = 56 females) completed both clinical interviews and structural MRI scans at 1-, 6-, and 14-months after ED admission (alias T1, T2, and T3). While all participants met PTSD diagnosis at T1, only n = 29 still met PTSD diagnosis at T3 (a "non-Remission" Group), while n = 71 did not (a "Remission" Group). Bayesian multilevel modeling analysis showed robust evidence for smaller right hippocampus volume (P+ of ~0.014) and moderate evidence for larger left amygdala volume (P+ of ~0.870) at T1 in the "non-Remission" group, compared to the "Remission" group. Subregion analysis further demonstrated robust evidence for smaller volume in the subiculum and right CA1 hippocampal subregions (P+ of ~0.021-0.046) in the "non-Remission" group. No time-dependent volumetric changes (T1 to T2 to T3) were observed across all participants or between groups. Results support the "vulnerability trait" hypothesis, suggesting that lower initial volumes of specific hippocampus subregions are associated with non-remitting PTSD. The stable volume of all hippocampal and amygdala subregions does not support the idea of consequential, progressive, stress-related atrophy during the first critical year following trauma exposure.
UR - http://www.scopus.com/inward/record.url?scp=85140611972&partnerID=8YFLogxK
U2 - 10.1038/s41380-022-01842-x
DO - 10.1038/s41380-022-01842-x
M3 - Article
C2 - 36280750
SN - 1359-4184
VL - 2022
SP - 657
EP - 667
JO - Molecular Psychiatry
JF - Molecular Psychiatry
IS - 2
ER -