Abstract
Background and objective. Low back pain (LBP) is considered the most common and challenging disorder in health care. Although its incidence increases with age, a student’s sedentary behavior could contribute to this risk. Through machine learning (ML), advanced algorithms can analyze complex patterns in health data, enabling accurate prediction and targeted prevention of medical conditions such as LBP. This study aims to detect the factors associated with LBP among health sciences students. Methods. A self-administered modified version of the Standardized Nordic Questionnaire was completed by 222 freshman health sciences students from May to June 2022. A supervised random forest algorithm was utilized to analyze data and prioritize the importance of variables related to LBP. The model’s predictive capability was further visualized using a decision tree to identify high-risk patterns and associations. Results. A total of 197/222 (88.7%) students participated in this study, most of whom (75%) were female. Their mean age and body mass index were 23 ± 3.8 and 23 ± 3.5, respectively. In this group, 46% (n = 90) of the students reported having experienced LBP in the last month, 15% (n = 30) were smokers, and 60% (n = 119) were involved in prolonged sitting (more than 3 h per day). The decision tree of ML revealed that a history of pain (score = 1), as well as disability (score= 0.34) and physical activity (score = 0.21), were significantly associated with LBP. Conclusions. Approximately 46% of the health science students reported LBP in the last month, and a machine-learning approach highlighted a history of pain as the most significant factor related to LBP.
| Original language | English |
|---|---|
| Article number | 2046 |
| Journal | Journal of Clinical Medicine |
| Volume | 14 |
| Issue number | 6 |
| DOIs | |
| State | Published - 1 Mar 2025 |
| Externally published | Yes |
Keywords
- health science students
- history of pain
- low back pain
- machine learning
- physical activity
ASJC Scopus subject areas
- General Medicine