TY - GEN
T1 - Lower Bounds for Matroid Optimization Problems with a Linear Constraint
AU - Doron-Arad, Ilan
AU - Kulik, Ariel
AU - Shachnai, Hadas
N1 - Publisher Copyright:
© Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai.
PY - 2024/7/1
Y1 - 2024/7/1
N2 - We study a family of matroid optimization problems with a linear constraint (MOL). In these problems, we seek a subset of elements which optimizes (i.e., maximizes or minimizes) a linear objective function subject to (i) a matroid independent set, or a matroid basis constraint, (ii) additional linear constraint. A notable member in this family is budgeted matroid independent set (BM), which can be viewed as classic 0/1-knapsack with a matroid constraint. While special cases of BM, such as knapsack with cardinality constraint and multiple-choice knapsack, admit a fully polynomial-time approximation scheme (Fully PTAS), the best known result for BM on a general matroid is an Efficient PTAS. Prior to this work, the existence of a Fully PTAS for BM, and more generally, for any problem in the family of MOL problems, has been open. In this paper, we answer this question negatively by showing that none of the (non-trivial) problems in this family admits a Fully PTAS. This resolves the complexity status of several well studied problems. Our main result is obtained by showing first that exact weight matroid basis (EMB) does not admit a pseudo-polynomial time algorithm. This distinguishes EMB from the special cases of k-subset sum and EMB on a linear matroid, which are solvable in pseudo-polynomial time. We then obtain unconditional hardness results for the family of MOL problems in the oracle model (even if randomization is allowed), and show that the same results hold when the matroids are encoded as part of the input, assuming P ≠ NP. For the hardness proof of EMB, we introduce the Π-matroid family. This intricate subclass of matroids, which exploits the interaction between a weight function and the matroid constraint, may find use in tackling other matroid optimization problems.
AB - We study a family of matroid optimization problems with a linear constraint (MOL). In these problems, we seek a subset of elements which optimizes (i.e., maximizes or minimizes) a linear objective function subject to (i) a matroid independent set, or a matroid basis constraint, (ii) additional linear constraint. A notable member in this family is budgeted matroid independent set (BM), which can be viewed as classic 0/1-knapsack with a matroid constraint. While special cases of BM, such as knapsack with cardinality constraint and multiple-choice knapsack, admit a fully polynomial-time approximation scheme (Fully PTAS), the best known result for BM on a general matroid is an Efficient PTAS. Prior to this work, the existence of a Fully PTAS for BM, and more generally, for any problem in the family of MOL problems, has been open. In this paper, we answer this question negatively by showing that none of the (non-trivial) problems in this family admits a Fully PTAS. This resolves the complexity status of several well studied problems. Our main result is obtained by showing first that exact weight matroid basis (EMB) does not admit a pseudo-polynomial time algorithm. This distinguishes EMB from the special cases of k-subset sum and EMB on a linear matroid, which are solvable in pseudo-polynomial time. We then obtain unconditional hardness results for the family of MOL problems in the oracle model (even if randomization is allowed), and show that the same results hold when the matroids are encoded as part of the input, assuming P ≠ NP. For the hardness proof of EMB, we introduce the Π-matroid family. This intricate subclass of matroids, which exploits the interaction between a weight function and the matroid constraint, may find use in tackling other matroid optimization problems.
KW - approximation schemes
KW - budgeted problems
KW - knapsack
KW - matroid optimization
UR - http://www.scopus.com/inward/record.url?scp=85198329147&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.ICALP.2024.56
DO - 10.4230/LIPIcs.ICALP.2024.56
M3 - Conference contribution
AN - SCOPUS:85198329147
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 51st International Colloquium on Automata, Languages, and Programming, ICALP 2024
A2 - Bringmann, Karl
A2 - Grohe, Martin
A2 - Puppis, Gabriele
A2 - Svensson, Ola
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 51st International Colloquium on Automata, Languages, and Programming, ICALP 2024
Y2 - 8 July 2024 through 12 July 2024
ER -