Lower Bounds for Matroid Optimization Problems with a Linear Constraint

Ilan Doron-Arad, Ariel Kulik, Hadas Shachnai

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

We study a family of matroid optimization problems with a linear constraint (MOL). In these problems, we seek a subset of elements which optimizes (i.e., maximizes or minimizes) a linear objective function subject to (i) a matroid independent set, or a matroid basis constraint, (ii) additional linear constraint. A notable member in this family is budgeted matroid independent set (BM), which can be viewed as classic 0/1-knapsack with a matroid constraint. While special cases of BM, such as knapsack with cardinality constraint and multiple-choice knapsack, admit a fully polynomial-time approximation scheme (Fully PTAS), the best known result for BM on a general matroid is an Efficient PTAS. Prior to this work, the existence of a Fully PTAS for BM, and more generally, for any problem in the family of MOL problems, has been open. In this paper, we answer this question negatively by showing that none of the (non-trivial) problems in this family admits a Fully PTAS. This resolves the complexity status of several well studied problems. Our main result is obtained by showing first that exact weight matroid basis (EMB) does not admit a pseudo-polynomial time algorithm. This distinguishes EMB from the special cases of k-subset sum and EMB on a linear matroid, which are solvable in pseudo-polynomial time. We then obtain unconditional hardness results for the family of MOL problems in the oracle model (even if randomization is allowed), and show that the same results hold when the matroids are encoded as part of the input, assuming P ≠ NP. For the hardness proof of EMB, we introduce the Π-matroid family. This intricate subclass of matroids, which exploits the interaction between a weight function and the matroid constraint, may find use in tackling other matroid optimization problems.

Original languageEnglish
Title of host publication51st International Colloquium on Automata, Languages, and Programming, ICALP 2024
EditorsKarl Bringmann, Martin Grohe, Gabriele Puppis, Ola Svensson
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959773225
DOIs
StatePublished - 1 Jul 2024
Externally publishedYes
Event51st International Colloquium on Automata, Languages, and Programming, ICALP 2024 - Tallinn, Estonia
Duration: 8 Jul 202412 Jul 2024

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume297
ISSN (Print)1868-8969

Conference

Conference51st International Colloquium on Automata, Languages, and Programming, ICALP 2024
Country/TerritoryEstonia
CityTallinn
Period8/07/2412/07/24

Keywords

  • approximation schemes
  • budgeted problems
  • knapsack
  • matroid optimization

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Lower Bounds for Matroid Optimization Problems with a Linear Constraint'. Together they form a unique fingerprint.

Cite this