Machine-Learning Based Objective Function Selection for Community Detection

Asa Bornstein, Amir Rubin, Danny Hendler

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

NECTAR, a Node-centric ovErlapping Community deTection AlgoRithm, presented by Cohen et al., chooses dynamically between two objective functions which to optimize, based on the network on which it is invoked. It was shown that this approach outperforms six state-of-the-art algorithms for overlapping community detection. In this work, we present NECTAR-ML, an extension of the NECTAR algorithm that uses a machine-learning based model for automating the selection of the objective function, trained and evaluated on a dataset of 15,755 synthetic and 7 real-world networks. Our analysis shows that in approximately 90% of the cases our model was able to successfully select the correct objective function. We conducted a competitive analysis of NECTAR and NECTAR-ML. NECTAR-ML was shown to significantly outperform NECTAR’s ability to select the best objective function. We also conducted a competitive analysis of NECTAR-ML and two additional state-of-the-art multi-objective evolutionary community detection algorithms. NECTAR-ML outperformed both algorithms in terms of average detection quality. Multi-objective evolutionary algorithms are considered to be the most popular approach to solve multi-objective optimization problems and the fact that NECTAR-ML significantly outperforms them demonstrates the effectiveness of ML-based objective function selection.

Original languageEnglish
Title of host publicationCyber Security, Cryptology, and Machine Learning - 6th International Symposium, CSCML 2022, Proceedings
EditorsShlomi Dolev, Amnon Meisels, Jonathan Katz
PublisherSpringer Science and Business Media Deutschland GmbH
Pages135-152
Number of pages18
ISBN (Print)9783031076886
DOIs
StatePublished - 1 Jan 2022
Event6th International Symposium on Cyber Security Cryptography and Machine Learning, CSCML 2022 - Beer Sheva, Israel
Duration: 30 Jun 20221 Jul 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13301 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference6th International Symposium on Cyber Security Cryptography and Machine Learning, CSCML 2022
Country/TerritoryIsrael
CityBeer Sheva
Period30/06/221/07/22

Keywords

  • Community detection
  • Complex networks
  • Machine learning
  • Overlapping community detection
  • Supervised learning

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science (all)

Fingerprint

Dive into the research topics of 'Machine-Learning Based Objective Function Selection for Community Detection'. Together they form a unique fingerprint.

Cite this