Abstract
Context. The mean-field theory of magnetized stellar convection gives rise to two distinct instabilities: the large-scale dynamo instability, operating in the bulk of the convection zone and a negative effective magnetic pressure instability (NEMPI) operating in the strongly stratified surface layers. The latter might be important in connection with magnetic spot formation. However, as follows from theoretical analysis, the growth rate of NEMPI is suppressed with increasing rotation rates. On the other hand, recent direct numerical simulations (DNS) have shown a subsequent increase in the growth rate. Aims. We examine quantitatively whether this increase in the growth rate of NEMPI can be explained by an α2 mean-field dynamo, and whether both NEMPI and the dynamo instability can operate at the same time. Methods. We use both DNS and mean-field simulations (MFS) to solve the underlying equations numerically either with or without an imposed horizontal field. We use the test-field method to compute relevant dynamo coefficients. Results. DNS show that magnetic flux concentrations are still possible up to rotation rates above which the large-scale dynamo effect produces mean magnetic fields. The resulting DNS growth rates are quantitatively reproduced with MFS. As expected for weak or vanishing rotation, the growth rate of NEMPI increases with increasing gravity, but there is a correction term for strong gravity and large turbulent magnetic diffusivity. Conclusions. Magnetic flux concentrations are still possible for rotation rates above which dynamo action takes over. For the solar rotation rate, the corresponding turbulent turnover time is about 5 h, with dynamo action commencing in the layers beneath.
Original language | English |
---|---|
Article number | A112 |
Journal | Astronomy and Astrophysics |
Volume | 568 |
DOIs | |
State | Published - 1 Jan 2014 |
Keywords
- Dynamo
- Hydrodynamics
- Magnetohydrodynamics (MHD)
- Sunspots
- Turbulence
ASJC Scopus subject areas
- Astronomy and Astrophysics
- Space and Planetary Science