Magnetization of two coupled rings

Y. Avishai, J. M. Luck

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

We investigate the persistent currents and magnetization of a mesoscopic system consisting of two clean metallic rings sharing a single contact point in a magnetic field. Many novel features with respect to the single-ring geometry are underlined, including the explicit dependence of wavefunctions on the Aharonov-Bohm fluxes, the complex pattern of two-fold and three-fold degeneracies, the key role of length and flux commensurability, and in the case of commensurate ring lengths the occurrence of idle levels which do not carry any current. Spin-orbit interactions, induced by the electric fields of charged wires threading the rings, give rise to a peculiar version of the Aharonov-Casher effect where, unlike for a single ring, spin is not conserved. Remarkably enough, this can only be realized when the Aharonov-Bohm fluxes in both rings are neither integer nor half-integer multiples of the flux quantum.

Original languageEnglish
Article number175301
JournalJournal of Physics A: Mathematical and Theoretical
Volume42
Issue number17
DOIs
StatePublished - 27 Jul 2009

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Modeling and Simulation
  • Mathematical Physics
  • Physics and Astronomy (all)

Fingerprint

Dive into the research topics of 'Magnetization of two coupled rings'. Together they form a unique fingerprint.

Cite this