Many-body dynamical localization and thermalization

Christine Khripkov, Amichay Vardi, Doron Cohen

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

We show that a quantum dynamical localization effect can be observed in a generic thermalization process of two weakly coupled chaotic subsystems. Specifically, our model consists of the minimal experimentally relevant subsystems that exhibit chaos, which are 3-site Bose-Hubbard units. Due to the high dimensionality of the composite 6-site system, the quantum localization effect is weak and cannot be resolved merely by the breakdown of quantum-to-classical correspondence. Instead, we adopt an intrinsic definition of localization as the memory of initial conditions, which is not related to the underlying classical dynamics. We discuss the dynamics in the chaotic sea, and in the vicinity of the mobility edge, beyond which ergodization is suppressed.

Original languageEnglish
Article number043603
JournalPhysical Review A
Volume101
Issue number4
DOIs
StatePublished - 1 Apr 2020

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Many-body dynamical localization and thermalization'. Together they form a unique fingerprint.

Cite this