@article{493a238e483c4601983ffc6d364b86a6,
title = "Maturation and circuit integration of transplanted human cortical organoids",
abstract = "Self-organizing neural organoids represent a promising in vitro platform with which to model human development and disease1–5. However, organoids lack the connectivity that exists in vivo, which limits maturation and makes integration with other circuits that control behaviour impossible. Here we show that human stem cell-derived cortical organoids transplanted into the somatosensory cortex of newborn athymic rats develop mature cell types that integrate into sensory and motivation-related circuits. MRI reveals post-transplantation organoid growth across multiple stem cell lines and animals, whereas single-nucleus profiling shows progression of corticogenesis and the emergence of activity-dependent transcriptional programs. Indeed, transplanted cortical neurons display more complex morphological, synaptic and intrinsic membrane properties than their in vitro counterparts, which enables the discovery of defects in neurons derived from individuals with Timothy syndrome. Anatomical and functional tracings show that transplanted organoids receive thalamocortical and corticocortical inputs, and in vivo recordings of neural activity demonstrate that these inputs can produce sensory responses in human cells. Finally, cortical organoids extend axons throughout the rat brain and their optogenetic activation can drive reward-seeking behaviour. Thus, transplanted human cortical neurons mature and engage host circuits that control behaviour. We anticipate that this approach will be useful for detecting circuit-level phenotypes in patient-derived cells that cannot otherwise be uncovered.",
author = "Omer Revah and Felicity Gore and Kelley, {Kevin W.} and Jimena Andersen and Noriaki Sakai and Xiaoyu Chen and Li, {Min Yin} and Fikri Birey and Xiao Yang and Saw, {Nay L.} and Baker, {Samuel W.} and Amin, {Neal D.} and Shravanti Kulkarni and Rachana Mudipalli and Bianxiao Cui and Seiji Nishino and Grant, {Gerald A.} and Knowles, {Juliet K.} and Mehrdad Shamloo and Huguenard, {John R.} and Karl Deisseroth and Pașca, {Sergiu P.}",
note = "Funding Information: We thank L. D. Pisani, and members of the Pasca, Deisseroth and Huguenard laboratories including M. Thete for insightful discussions and technical support. This work was supported by the Stanford Big Idea Project on Brain Organogenesis (Wu Tsai Neuroscience Institute) (to S.P.P., K.D. and B.C.), the National Institute of Mental Health (R01 MH115012) (to S.P.P.), the Kwan Funds (to S.P.P.), the Senkut Funds (to S.P.P.), the Coates Foundation (to S.P.P.), the Ludwig Family Foundation (to S.P.P.), the Alfred E. Mann Foundation (to S.P.P.), the Stanford Maternal & Child Health Research Institute (MCHRI) Postdoctoral Fellowship (to F.B. and O.R.), the Walter V. and Idun Berry Postdoctoral Fellowship (to F.G. and J.A.), the NARSAD Young Investigator Award (to F.G.) and an NIH NIDA K99/R00 (K99 DA050662) (to F.G.). S.P.P. is a New York Stem Cell Foundation (NYSCF) Robertson Stem Cell Investigator and a CZI Ben Barres Investigator. We thank the Stanford Center for Innovation in In vivo Imaging (SCi 3)—Small Animal Imaging Center, which is supported by the NIH S10 Shared Instrumentation grant (S10RR026917-01); and the Stanford Behavioral and Functional Neuroscience Laboratory, which is supported by a NIH S10 Shared Instrumentation for Animal Research grant (1S10OD030452-01). Funding Information: We thank L. D. Pisani, and members of the Pasca, Deisseroth and Huguenard laboratories including M. Thete for insightful discussions and technical support. This work was supported by the Stanford Big Idea Project on Brain Organogenesis (Wu Tsai Neuroscience Institute) (to S.P.P., K.D. and B.C.), the National Institute of Mental Health (R01 MH115012) (to S.P.P.), the Kwan Funds (to S.P.P.), the Senkut Funds (to S.P.P.), the Coates Foundation (to S.P.P.), the Ludwig Family Foundation (to S.P.P.), the Alfred E. Mann Foundation (to S.P.P.), the Stanford Maternal & Child Health Research Institute (MCHRI) Postdoctoral Fellowship (to F.B. and O.R.), the Walter V. and Idun Berry Postdoctoral Fellowship (to F.G. and J.A.), the NARSAD Young Investigator Award (to F.G.) and an NIH NIDA K99/R00 (K99 DA050662) (to F.G.). S.P.P. is a New York Stem Cell Foundation (NYSCF) Robertson Stem Cell Investigator and a CZI Ben Barres Investigator. We thank the Stanford Center for Innovation in In vivo Imaging (SCi 3)—Small Animal Imaging Center, which is supported by the NIH S10 Shared Instrumentation grant (S10RR026917-01); and the Stanford Behavioral and Functional Neuroscience Laboratory, which is supported by a NIH S10 Shared Instrumentation for Animal Research grant (1S10OD030452-01). Publisher Copyright: {\textcopyright} 2022, The Author(s).",
year = "2022",
month = oct,
day = "12",
doi = "10.1038/s41586-022-05277-w",
language = "English",
volume = "610",
pages = "319--326",
journal = "Nature",
issn = "0028-0836",
publisher = "Nature Research",
number = "7931",
}