TY - GEN
T1 - Maximizing Nash Social Welfare under Two-Sided Preferences
AU - Jain, Pallavi
AU - Vaish, Rohit
N1 - Publisher Copyright:
Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2024/3/25
Y1 - 2024/3/25
N2 - The maximum Nash social welfare (NSW)-which maximizes the geometric mean of agents' utilities-is a fundamental solution concept with remarkable fairness and efficiency guarantees. The computational aspects of NSW have been extensively studied for one-sided preferences where a set of agents have preferences over a set of resources. Our work deviates from this trend and studies NSW maximization for two-sided preferences, wherein a set of workers and firms, each having a cardinal valuation function, are matched with each other. We provide a systematic study of the computational complexity of maximizing NSW for many-to-one matchings under two-sided preferences. Our main negative result is that maximizing NSW is NP-hard even in a highly restricted setting where each firm has capacity 2, all valuations are in the range {0, 1, 2}, and each agent positively values at most three other agents. In search of positive results, we develop approximation algorithms as well as parameterized algorithms in terms of natural parameters such as the number of workers, the number of firms, and the firms' capacities. We also provide algorithms for restricted domains such as symmetric binary valuations and bounded degree instances.
AB - The maximum Nash social welfare (NSW)-which maximizes the geometric mean of agents' utilities-is a fundamental solution concept with remarkable fairness and efficiency guarantees. The computational aspects of NSW have been extensively studied for one-sided preferences where a set of agents have preferences over a set of resources. Our work deviates from this trend and studies NSW maximization for two-sided preferences, wherein a set of workers and firms, each having a cardinal valuation function, are matched with each other. We provide a systematic study of the computational complexity of maximizing NSW for many-to-one matchings under two-sided preferences. Our main negative result is that maximizing NSW is NP-hard even in a highly restricted setting where each firm has capacity 2, all valuations are in the range {0, 1, 2}, and each agent positively values at most three other agents. In search of positive results, we develop approximation algorithms as well as parameterized algorithms in terms of natural parameters such as the number of workers, the number of firms, and the firms' capacities. We also provide algorithms for restricted domains such as symmetric binary valuations and bounded degree instances.
UR - http://www.scopus.com/inward/record.url?scp=85188360535&partnerID=8YFLogxK
U2 - 10.1609/aaai.v38i9.28839
DO - 10.1609/aaai.v38i9.28839
M3 - Conference contribution
AN - SCOPUS:85188360535
T3 - Proceedings of the AAAI Conference on Artificial Intelligence
SP - 9798
EP - 9806
BT - Technical Tracks 14
A2 - Wooldridge, Michael
A2 - Dy, Jennifer
A2 - Natarajan, Sriraam
PB - Association for the Advancement of Artificial Intelligence
T2 - 38th AAAI Conference on Artificial Intelligence, AAAI 2024
Y2 - 20 February 2024 through 27 February 2024
ER -