Maximizing Nash Social Welfare under Two-Sided Preferences

Pallavi Jain, Rohit Vaish

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

The maximum Nash social welfare (NSW)-which maximizes the geometric mean of agents' utilities-is a fundamental solution concept with remarkable fairness and efficiency guarantees. The computational aspects of NSW have been extensively studied for one-sided preferences where a set of agents have preferences over a set of resources. Our work deviates from this trend and studies NSW maximization for two-sided preferences, wherein a set of workers and firms, each having a cardinal valuation function, are matched with each other. We provide a systematic study of the computational complexity of maximizing NSW for many-to-one matchings under two-sided preferences. Our main negative result is that maximizing NSW is NP-hard even in a highly restricted setting where each firm has capacity 2, all valuations are in the range {0, 1, 2}, and each agent positively values at most three other agents. In search of positive results, we develop approximation algorithms as well as parameterized algorithms in terms of natural parameters such as the number of workers, the number of firms, and the firms' capacities. We also provide algorithms for restricted domains such as symmetric binary valuations and bounded degree instances.

Original languageEnglish
Title of host publicationTechnical Tracks 14
EditorsMichael Wooldridge, Jennifer Dy, Sriraam Natarajan
PublisherAssociation for the Advancement of Artificial Intelligence
Pages9798-9806
Number of pages9
Edition9
ISBN (Electronic)1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879
DOIs
StatePublished - 25 Mar 2024
Externally publishedYes
Event38th AAAI Conference on Artificial Intelligence, AAAI 2024 - Vancouver, Canada
Duration: 20 Feb 202427 Feb 2024

Publication series

NameProceedings of the AAAI Conference on Artificial Intelligence
Number9
Volume38
ISSN (Print)2159-5399
ISSN (Electronic)2374-3468

Conference

Conference38th AAAI Conference on Artificial Intelligence, AAAI 2024
Country/TerritoryCanada
CityVancouver
Period20/02/2427/02/24

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Maximizing Nash Social Welfare under Two-Sided Preferences'. Together they form a unique fingerprint.

Cite this