Abstract
Abstract: Let $$\mathbf{E}=\mathbf{E}(\Omega,\mathcal{F},\mu)$$ be a symmetric Banach space of measurable functions on a measure space $$(\Omega,\mathcal{F},\mu)$$. We prove a version of Mean (Statistical) Ergodic Theorem for Cesáro averages $$A_{n,T}f=1/n\sum_{k=1}^{n}T^{k-1}f$$, $$f\in\mathbf{E}$$, while operators on $$\mathbf{E}$$ are induced by positive absolute contraction in $$\mathbf{L}_{1}+\mathbf{L}_{\infty}=(\mathbf{L}_{1}+\mathbf{L}_{\infty})(\Omega,\mathcal{F},\mu)$$.
Original language | English |
---|---|
Pages (from-to) | 949-966 |
Number of pages | 18 |
Journal | Lobachevskii Journal of Mathematics |
Volume | 42 |
Issue number | 5 |
DOIs | |
State | Published - 1 May 2021 |
Keywords
- Cesáro averages
- absolute contractions
- conservative and strictly conservative operators
- ergodic theorems
- norm convergence
- symmetric spaces
ASJC Scopus subject areas
- General Mathematics