TY - GEN
T1 - Meanshift clustering for DNA microarray analysis
AU - Barash, Danny
AU - Comaniciu, Dorin
PY - 2004/12/1
Y1 - 2004/12/1
N2 - Meanshift clustering is a well established algorithm that has been applied successfully in image processing and computer vision. Cluster centers are derived by local mode seeking identifying maxima in the normalized density of the data set. Recently, quantum clustering that highly resembles mean shift clustering has been proposed for analyzing microarray expression data. Quantum clustering is based on physical intuition derived from quantum mechanics. By an iterative process using a gradient descent procedure, the potential energy V belonging to the Hamiltonian of the time-indepedent Schrodinger equation develops minima that are identified with cluster centers. The analogies between the wavefunction in quantum clustering and the multivariate kernel density estimator in meanshift clustering are leading to closely related formulations. However, the approach towards the minima of the potential in quantum clustering needs to be performed unrelatedfy to the formulation, by gradient descent steps. In contrast, in meanshift clustering the approach towards the maxima of the normalized density is performed by the meanshift vector that is derived by the formulation of the methodology. It points towards the direction of the maximum increase in the underlying density. Based on these observations, we propose implementing meanshift clustering to improve the efficiency of local mode seeking in analyzing expression data.
AB - Meanshift clustering is a well established algorithm that has been applied successfully in image processing and computer vision. Cluster centers are derived by local mode seeking identifying maxima in the normalized density of the data set. Recently, quantum clustering that highly resembles mean shift clustering has been proposed for analyzing microarray expression data. Quantum clustering is based on physical intuition derived from quantum mechanics. By an iterative process using a gradient descent procedure, the potential energy V belonging to the Hamiltonian of the time-indepedent Schrodinger equation develops minima that are identified with cluster centers. The analogies between the wavefunction in quantum clustering and the multivariate kernel density estimator in meanshift clustering are leading to closely related formulations. However, the approach towards the minima of the potential in quantum clustering needs to be performed unrelatedfy to the formulation, by gradient descent steps. In contrast, in meanshift clustering the approach towards the maxima of the normalized density is performed by the meanshift vector that is derived by the formulation of the methodology. It points towards the direction of the maximum increase in the underlying density. Based on these observations, we propose implementing meanshift clustering to improve the efficiency of local mode seeking in analyzing expression data.
UR - http://www.scopus.com/inward/record.url?scp=14044269495&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:14044269495
SN - 0769521940
SN - 9780769521947
T3 - Proceedings - 2004 IEEE Computational Systems Bioinformatics Conference, CSB 2004
SP - 578
EP - 579
BT - Proceedings - 2004 IEEE Computational Systems Bioinformatics Conference, CSB 2004
T2 - Proceedings - 2004 IEEE Computational Systems Bioinformatics Conference, CSB 2004
Y2 - 16 August 2004 through 19 August 2004
ER -